




A point that moves on a coordinate line is said to be in simple harmonic motion if its distance/displacement, d, from the origin at time t is given by either

$$d = a\sin(bt)$$

$$d = a\cos(bt)$$

Where a and b are real numbers such that b > 0.

The motion of the object has the following properties:

Frequency = 
$$\frac{b}{a}$$

b cycles

seconds, minutes,

etc.

"time" unit

## Examples:



1. Given the equation for the simple harmonic motion  $d = 6\sin(\frac{3\pi}{4}t)$ ,

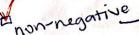


amp a) Find the maximum displacement. = 0 units



b) Find the frequency. =  $\frac{b}{2\pi} = \frac{3\pi}{4} \cdot \frac{1}{2\pi} = \frac{3}{8}$  cycles per t




c) Find the value of d when t = 4.

$$d = (3\pi/4 \cdot 4) = (3\pi/3\pi) = (0) = 0$$
 units



771

d) Find the least-positive value of t for which d=0.



0= frsm(311/4+1) > 0= 211 (311/4. +) b 0= 311.+ SIN-1(0) = 311/4. +)



2. Write an equation for the simple harmonic motion of a ball with a maximum displacement of 10cm, where the period is 4 seconds. What is the frequency of the motion?

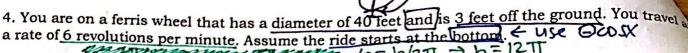
$$4 = \frac{4}{2\pi}$$
  $y = \pm 10 \sin(\frac{\pi}{2}t)$   $\frac{b}{2\pi} = \frac{\pi}{2} \cdot \frac{1}{2\pi} = \frac{\pi}{2}$ 

$$\frac{b}{2\pi} = \frac{\pi}{2} \cdot \frac{1}{2\pi} =$$

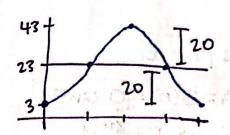
- a=±10
- 4b=2TT
- - (or cos) (Reciprocal of Per=4)
- 3. Suppose a ball at the end of a spring undergoes simple harmonic motion where 8 cm is the maximum displacement. In addition, it takes 8 seconds for the ball to move from its maximum displacement above zero to its maximum displacement below zero and back again. Assume the initial position is at equilibrium. per= 9 => 8= 2TT -3 86=2TT



Write an equation for the simple harmonic motion of the mass.


b) Find the displacement of the mass at 20 seconds.

$$d = 8sin(\frac{\pi}{4} \cdot 20) = 8sin(s\pi) = 80(0) =$$


- (@ equillibrium)
- c) What is the least positive value of t for which d = 3cm?

- d) What is the frequency of this motion in cycles per second?

$$\frac{b}{2\pi} = \frac{\pi}{4} \cdot \frac{1}{2\pi} = \frac{1}{8}$$
 cycles per sec.



a) Find an equation to model your height above the ground as a function of time.



$$d = -20\cos(12\pi t) + 23$$

$$d = 23$$
(middle)

b) How high above the ground are you at 42 seconds? t=42 sec = ? min?

18 = -20 cos (1217t) +23

In exercises 5-7, an object moves in simple harmonic motion described by the given equations where t is measured in seconds and d in inches. In each exercise, find the following:

- a) The maximum displacement
- b) Distance from rest position at t = 0 (and whether it's above or below equilibrium)
- c) Direction of initial movement
- d) Time required for one cycle (Period)

$$5. d = 5\cos\frac{\pi}{2}t$$

b) 
$$5\cos(0) = 5$$
 (above equil.)

6. 
$$d = -6\cos 2\pi t$$

c) upward

d) 
$$\frac{2\pi}{2\pi} = 1$$
 sec.

$$7. d = -5 \sin \frac{2\pi}{3} t \qquad \bigcirc$$