Evaluate each of the following -- exact values only.

$$\tan(0) - 6\sin(\frac{\pi}{2})$$

$$\sin^2\left(\frac{5\pi}{4}\right) - \cos^2\left(\frac{3\pi}{2}\right) + \tan\left(\frac{4\pi}{3}\right)$$

$\sin^2\left(\frac{2\pi}{3}\right) + \cos^2\left(\frac{2\pi}{3}\right)$ $\left(\frac{3}{2}\right)^2 + \left(\frac{-1}{2}\right)^2$ $= \frac{3}{4} + \frac{1}{4} = \boxed{1}$

opposite

THE 6 TRIG FUNCTIONS

Recall SOH-CAH-TOA?

$$\sin \theta = \frac{O}{H}$$

$$\cos \theta = \frac{A}{H}$$

$$\tan \theta = \frac{\bigcirc}{\bigwedge}$$

hypotenuse

adjacent

$$\csc\theta = \frac{1+0}{2}$$

$$\sec \theta = \frac{H/A}{\text{SeCant}}$$

$$\cot \theta = \frac{A/b}{\cot \tan 2\theta}$$

** Let's find each Trig Function's "Happy Place" (in which quadrants they are each positive) and label our Unit Circle (back of agenda) with our findings. **

Ex 1: Angle Θ has a terminal side that passes through the point (3, 2). Find ALL 6 trig ratios for this angle. $2^2 + 3^2 = c^2$

$$\sin \theta = \frac{2}{\sqrt{13}} = \frac{2\sqrt{3}}{13}$$

$$\cos \theta = \frac{3\sqrt{13}}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$$

$$\tan \theta = \frac{2\sqrt{3}}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$$

$$\csc \theta = \frac{13}{2}$$

$$\sec \theta = \frac{3}{2}$$

$$\cot \theta = \frac{3}{2}$$

Ex 2: Find the trig values. (Sino, coso, tano)

Sidebar: How would you find theta?

Ex 3: Find the value of y. Then find all 6 trig ratios.

$$SIMO = \frac{0}{H} = \frac{-12}{13}$$

$$y^2 = 169 - 25$$
 csco= $\frac{4}{5} = -\frac{13}{12}$
 $y^2 = 144$ seco= $\frac{4}{5} = -\frac{13}{5}$

$$y=-12$$

Evaluate the following without using a calculator:

1. Find
$$\cos \theta$$
 and $\cot \theta$ if $\sin \theta = \frac{1}{4}$ and $\tan \theta < 0$.

$$\cos 0 = \frac{A}{H} = \left(\frac{-\sqrt{15}}{4}\right)$$

1-512+ 42= 132

t Jy 2 = 144

y=012

MIG

$$1^2 + A^2 = 4^2$$

 $A^2 = 16 - 1 = 15$

2. Find $\sec \theta$ and $\csc \theta$ if $\cot \theta = \frac{\pi}{3}$ and $\cos \theta < 0$.

Se
$$CO = \frac{H}{A} = \frac{5}{-4}$$

$$CSCO = \frac{H}{O} = \frac{5}{3}$$

$$25 = H^2$$

3. Find $\tan \theta$ and $\sec \theta$ if $\sin \theta = 2/5$ and $\cos \theta > 0$.

$$tan0 = \frac{0}{A} = \frac{-2}{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}} = \frac{-2\sqrt{21}}{21}$$

Seco =
$$\frac{H}{A} = \frac{5}{\sqrt{21}}$$
, $\sqrt{21} = \frac{5\sqrt{21}}{21}$

1. Evaluate all six trig functions of the angle that terminates at the point (-4, -6) in the coordinate plane.

2. Evaluate all six trig functions of the angle that terminates at the (-3, 6) in the coordinate plane.

$$\frac{\sqrt{4}}{4} = \frac{\sqrt{3}}{3} = \frac{\sqrt{4}}{4} = \frac{\sqrt{4}}{3} = \frac{4$$

Evaluating Trig Functions

If. calculator Active:

Find the exact value of each trigonometric function.

 $CSCO = \frac{1}{SINO}$, $SECO = \frac{1}{coso}$, $coto = \frac{1}{tand}$

1) csc -900°

Undefined

$$2) \cos -\frac{11\pi}{6}$$

3) csc -990°

4)
$$\cot \frac{35\pi}{6}$$

5) tan -675°

6)
$$\sin 300^{\circ}$$
 $-\sqrt{3}$

7) $\csc \frac{3\pi}{4}$

8) sec π

****2

9) sec 840°

12)
$$\cot -\frac{7\pi}{4}$$

11) $\cot -2\pi$

Solve each equation for $0 \le \theta < 2\pi$.

13)
$$\sec \theta = 2$$

14)
$$\cos \theta = -\frac{\sqrt{3}}{2}$$

$$\frac{5\pi}{6} - \frac{7\pi}{6}$$

16)
$$\tan \theta = \sqrt{3}$$

$$\frac{11}{3} \cdot \frac{411}{3}$$

$$15) -1 = \csc \theta$$

18)
$$\sin \theta = -\sqrt{2}$$

17)
$$\sqrt{3} = \cot \theta$$

N	ame
- '	MILLO

Date

Angle of Elevation & Depression Worksheet (Cont.)

Find all values to the nearest tenth.

5. A man flies a kite with a 100 foot string. The angle of elevation of the string is 52°. How high off the ground is the kite?

6. From the top of a vertical cliff 40 m high, the angle of depression of an object that is level with the base of the cliff is 34°. How far is the object from the base of the cliff?

 $\chi = \frac{40}{\tan(34)} \approx 59.3 \text{ m}$ 7. An airplane takes off 200 yards in front of a 60 foot building. At what angle of elevation must the

plane take off in order to avoid crashing into the building? Assume that the airplane flies in a straight line and the angle of elevation remains constant until the airplane flies over the building.

8. A 14 foot ladder is used to scale a 13 foot wall. At what angle of elevation must the ladder be situated in order to reach the top of the wall?

SINX = 13 X= sin-1 (.929...) ~ (68.2°)

9. A person stands at the window of a building so that his eyes are 12.6 m above the level ground. An object is on the ground 58.5 m away from the building on a line directly beneath the person. Compute the angle of depression of the person's line of sight to the object on the ground.

10. A ramp is needed to allow vehicles to climb a 2 foot wall. The angle of elevation in order for the vehicles to safely go up must be 30° or less, and the longest ramp available is 5 feet long. Can this ramp be used safely?

