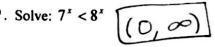
Unit 4 Test Review

Pre-Calculus Honors

* = NO CALCULATOR

Name: Ken



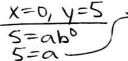
- *2. Rewrite in exponential form: $\log_m(5x) = s \implies \left[m^5 = 5X\right]$
- *3. Rewrite in logarithmic form & solve for w: $m-n=e^{5w-3} \rightarrow 109e(m-n)=5w-3$ *4. Evaluate: $\log_3(\frac{1}{\sqrt[3]{81}}) = 109_3(\frac{1}{81^{1/8}}) = 109_3(81^{-1/3})$ *5. Evaluate: $e^{\frac{1}{1347986}}$ *6. Condense into a single logarithm: $= 109_3(34)^{-1/3}$ $= 109_3(34)^{-1/3}$ $= 109_3(34)^{-1/3}$

- *6. Condense into a single logarithm:

- *6. Condense into a single logarithm:

 a) $7\log(x^4) 2\log(x^2y)$ $\log\left(\frac{x^28}{x^4y^2}\right) = \log\left(\frac{x^24}{y^2}\right) \qquad \ln\left(a^{-3}b^{-3}a^{5}b^{5}\right) = \ln\left(a^2b^2\right)$ *7. Expand the logarithm: $\log_3\frac{a^4b^{3/2}}{(4c)^2} = \frac{|4\log_3a + \frac{3}{2}\log_3b 2\log_34 2\log_3c}{|4\log_3a + \frac{3}{2}\log_3b 2\log_34b}$ *8. Evaluate: $\log_4(-5)$ undefined

 Or $3\log_3(b)$
- *9. Write the function of the form $f(x) = a \cdot b^x$ that goes through the points (0, 5) and (4, 20)



 $\frac{x=0, y=5}{5=ab^{0}} \xrightarrow{x=4, y=20} f(x) = 5 + \frac{5}{4} + \frac{5}{4} = \frac{2300}{1+4e^{-5t}}.$ 10. Given a population modeled by the function: $P(t) = \frac{2300}{1+4e^{-5t}}$.

- - b) What is the population at time 0? P(0) = 460c) When will the population reach 2000? $\[\[\] \approx 0.65 \]$
 - d) What are the asymptotes for this function?

SOLVE & SHOW ALL NECESSARY WORK

$$11.\,3^{2x-1}=21$$

*13.
$$\log_4 x = 3$$

$$X = 4^3$$

$$X = 64$$

15.
$$\log(x-9) + \log x = 1$$

$$|\log(x^{2}-9x)=1| |X=10|$$

$$|0'=x^{2}-9x|$$

$$0=(x-10)(x+1) |x=10|$$
oxfran

$$X = 10$$

*12.
$$2^{x+3} = 8^{2-x}$$

 $8^{x+3} = 8^{3(2-x)}$
 $x+3=6-3x$
 $(x=3/4)$

*14.
$$\log_2 \frac{1}{32} = x$$

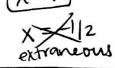
$$2^{X} = \frac{1}{32} \longrightarrow X = -5$$

$$2^{X} = 2^{-5}$$

*16.
$$\log 2x = \log(12x^4 - 6x^2) - \log(3x^2)$$

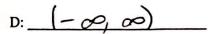
*16.
$$\log 2x = \log(12x^4 - 6x^2) - \log(3x^2)$$

 $\log 2x = \log(4x^2 - 2x)$
 $0 = 4x^2 - 2x - 2$
 $0 = 2(2x^2 - x - 1)$
 $0 = 2(x - 1)(2x + 1)$



Sketch a graph to help in your answer.

17. Analyze
$$f(x) = 3^x - 7$$

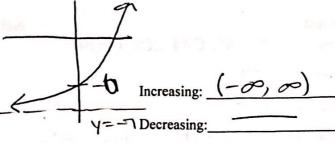


$$R: (-7, \infty)$$

x - intercept(s): (1.77, 0)

y – intercept: \bigcirc ,

Extrema:



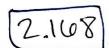
Even/Odd: neither

Boundedness: below

Continuity: Ves

End Behavior: $\lim_{x \to -\infty} f(x) = -7$ $\lim_{x \to -\infty} f(x) = \infty$

18. Evaluate: log, 68



*19. Simplify: The"

20. The number of North Carolina cows infected with the mad cow disease after t days is modeled by the function $P(t) = \frac{578}{1+46e^{-43t}}$. When will the number of cows be 473? SHOW ALL WORK.

$$P(t) = \frac{376}{1+46e^{-43t}}. \text{ When will the number of cows be 473? SHOW ALL WORK.}$$

$$\frac{473}{1+46e^{-43t}} = \frac{578}{473}$$

$$\frac{418e^{-43t}}{1+46e^{-43t}} = \frac{578}{473}$$

$$\frac{-43t}{-43} = \frac{418}{-43}$$

$$\frac{-43t}{-43} = \frac{418}{-43}$$

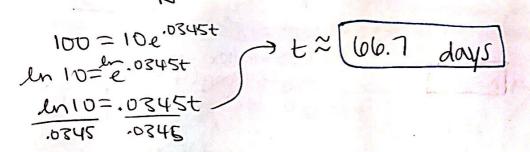
$$\frac{-43t}{-43} = \frac{418}{-43}$$

21. Use the data below to find the exponential regression. Predict the population in Punx sutawney for 2015.

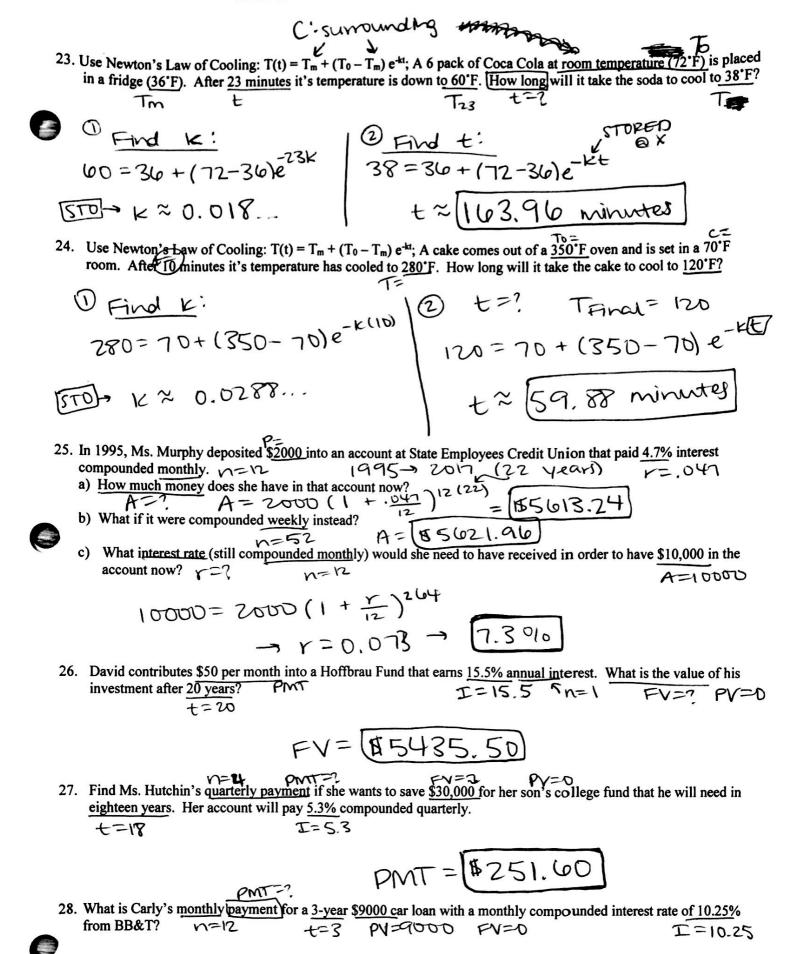
ч	Year	Punxsutawney Population
0	1935	980
10	1945	1040
33	1968	1178
44	1979	1253
58	1993	1355
67	2002	1423

Population in 2015: $(\chi = 80)$

22. A virus spreads according to $N = N_0e^{0.0345t}$ where time is measured in days. If 10 people are currently infected, how long does it take for 100 people to be infected? SHOW ALL WORK.



b)



PMT = (8291.46)