Logistic Functions: : ‘
é N you think it is reasonable for a populationgto grow exponentially indefinitely? N V) . ‘

Logistic Growth Functions ... functions that model situations where exponential growth is limited.
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The graph of a logistic function looks like an exponential function at first, but then “levels off” aty = c. The
logistic function hasjwo HA: y =0 andy =c. |

Example of modeling with the logistic function:

The number of students infected with flu after t days at Spri ngfield High School is modeled by the following
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b) After 5 days, how many students will be infected? B e S . {
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d) According to this model, when will the number of students infected be 8007
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MODELING CoNT.

_ Example 1. The

e a (24
Population of Glenh =0 0=4Zo0 oyrmvsia
? the rate of 2.25% per year. rook in the year 1910 wias 4200, Assume the population ir:creasr:gi at
Y=00225

a) Write an exponentia] model for the population of Glenbrook. Define your variables,
N= popWlovon = \JRAY S aftey ALD [\—/: Yooo(i~ 0.0?.Z‘S)t

b) Determine the population in 1930 and 1900.
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c) Determine when the population is

double the original nt, , .
Yoo double the original amount. . )
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Example 2: The half-life of a certain radioactive substance is 14 days. There are 10 grams present

initi b= ., =M A= 10

a) Express the amount of substance remaining as an exponential function of time. Define your variables.
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b) When will there be less than 1 gram remaining?
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Example 3: Find a logistic equation of the form that fits the graph below, if the y-intercept is
( 6, 5kand the point (24, 135) is on the curve. * 2z platt ALL wonSranks #
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