Unit 3 : Parametrics

Important Concepts

- Slope of a parametric curve
 - > Finding the first derivative of a parametric curve
 - ➤ Finding the second derivative of a parametric curve
- Finding the length of a parametric curve
- Combining vectors
- Forms of Vectors
 - ➤ Finding the component form of vectors
 - ➤ Finding the magnitude of vectors
 - ➤ Finding unit vectors
 - ➤ Finding tangent and normal vectors
 - Linear combination of vectors (standard vectors)
 - > Direction of Motion
- Integration
 - ➤ Initial Value Problem
- Position, Velocity, and Acceleration
- Projectile Motion
- Using derivatives to find point-slope form
- Finding the points at which the tangent to the curve is vertical and horizontal

Definitions:

- Parametric Equations: equations that use time (with x and y being dependent on time) to tell us more about position than a typical xy-equation; answering "where" and "when"
- Vector: a directed line that shows quantities that have direction and magnitude
- "Ideal" Projectile Motion: projectile object moving in a vertical plane and the only force is gravity
- Unit Vector: a vector whose magnitude is one
- Zero Vector: a vector whose horizontal and vertical components are zero and therefore its magnitude is zero
- Horizontal Component: x-component of a vector

Unit 3 : Parametrics

- Vertical Component: y-component of a vector
- Tangent : parallel
- Normal: perpendicular
- Position Vector: position of object at time t, relative to the origin
- Velocity Vector: direction and speed of object at time t; perpendicular to position
- Acceleration Vector: how speed and direction are changing at time t; perpendicular to velocity and opposite to position
- Standard Vector: vector that starts at the origin
- Speed: the magnitude of velocity; has no direction
- Direction of Motion: an unit vector that indicates direction but not magnitude
- Newton's 2nd Law of Motion (F = ma): shows the relationship between a force acting on an object, the mass of an object, and the acceleration of an object

Example Problems

- For the following curve, find the value of the slope at the point (0,3).
 x = 2cos(t), y = 3sin(t)
- 2. Find the value of d^2y/dx^2 at the indicated value: x = t - sin(t), y = 1 - cos(t) at t = $\pi/2$
- 3. Write, but do not solve, the integral to find the length of the curve: $X = 3\sin(3t)$, $y = 4\cos(2t)$ for $-2 \le t \le 4$
- Find the unit vectors (four in all) that are tangent <u>and</u> normal to the curve at the given point.

 $x = 1 + e^{t}$, $y = t - e^{-2t}$, t = 0

- 5. The vector PQ, where P = (1,3) and Q = (2,-1)
- 6. The sum of AB and CD, where A = (1,-1), B = (2,0), C = (-1,3), and D = (-2,2)
- 7. Evaluate $\int_{1}^{2} [(6-6t)i + 3(\sqrt{t})j] dt$
- 8. $d^2y/dx^2 = -32j$, r(0) = 100i, v(0)=8i+8j
- 9. $r(t) = (3\cos(t))i + (3\sin(t))j$

Unit 3 : Parametrics

Find velocity and acceleration vectors

- 10. A baseball is hit from a height of 3 feet with an initial speed of 120 ft/sec at an angle of 30 degrees. Find the horizontal and vertical components of the position function.
- 11. $x = t^2 + 1$, $y = t^3 4t$
 - a. Find the equation of the tangent line at t=3.
 - b. Find the value(s) of t where the tangent line is horizontal.
 - c. Find the point(s) where the tangent line is vertical.
- 12. $\mathbf{u} = \{3, -2\} \text{ and } \mathbf{v} = \{-2, 5\}$

Find the component form and magnitude form for: $\frac{3}{2}$ **u** + $\frac{4}{2}$ **v**