Unit 1: Review:)

By: Kaitlyn, Thomas, Jerry, Martin, and Rosa

1) Review slope fields and differential Equations

→ Slope fields are just tools to visualize the solution of a differential equation without actually being able to integrate to find the solution.

Ex:
$$\frac{dy}{dx} = \frac{1}{x}$$

Ex:
$$y' = x^2y$$
, (0,2)

2) Euler's Method

- \rightarrow Point Slope forms form; y-y₁ = m(x-x₁)
- → Error = | Actual Approximation |
- → Basis of Euler's method
 - Patching together a string of small linearizations to approximate the curve of a larger stretch
 - Given $\frac{dy}{dx} = f'(x,y)$ and $y(x_0) = y_0$
 - $y y_1 = m(x x_1) \rightarrow y = y_1 + m(x x_1)$
 - m = slope
 - $(x-x_1)$ = change in x
 - $y_n y_{n-1} = f'(x_{n-1}, y_{n-1}) \cdot \triangle x$
 - y_n = future y-value
 - y_{n-1} = previous y-value
 - f'(x_{n-1}, y_{n-1}) = slope of previous point
 ∆x = change in x

Ex: $\frac{dy}{dx} = f(x,y) = x + y$; y(0) = 1; $\Delta x = 0.1$ Evaluate at $x_n = -2$

n	X _n	y_n	(x+y)	$\frac{dy}{dx} \bullet \triangle x$

3) Exponential growth and decay

- → For a function y > 0 that is differentiable function of t and y' = ky
 → y=C e^{kt}
- → C is the initial value of y, k is the proportionality constant
- → for k> 0, we have exponential decay

$$-\frac{dy}{dt} = ky$$

$$dy = ky \cdot dt$$

$$\frac{dy}{y} = kdt$$

$$\int \frac{1}{y} dt = \int k dt$$

$$ln(y) = kt + c$$

$$e^{ln(y)} = e^{kt+c}$$

$$y = e^{kt} \cdot e^{c} = e^{kt} \cdot c = c = e^{kt}$$

Ex: The rate of change of y with respect to t is proportional to the value of y. When t=0, R=300 and when t=1, R=500. Write and solve the differential equation that models this situation.

4) Newtons Law of Cooling

- → Temperature of an object decreases at a rate proportional to the different between its current temperature and the surrounding air
- $\rightarrow \frac{dT}{dt}$ = -k(T T_s) where T is current temperature and T's is the surrounding temperature
 - Separate and Integrate
 - Assume Ts is constant
 - T = what we're solving for
 - At t=0, temp if T_0
 - $\rightarrow \frac{dT}{dt} = -k(T T_s), (0, T_0)$

$$\int \frac{1}{(T-T_s)} dt = \int -k dt$$

$$\operatorname{Ln} \left| T - T_s \right| = -kt + c$$

$$T - T_s = Ae^{-kt}$$

$$T_0 - T_s = Ae^{-k(0)}$$

$$T_0 - T_s = A \rightarrow T - T_s = (T_0 - T_s)e^{-kt}$$

Ex: Suppose a corpse at a temperature of 32°C arrives at a mortuary where the temperature, T, of the corpse, t, hr later is...

A)
$$\frac{dT}{dt} = -k(T-10)$$

B)
$$\frac{dT}{dt} = k(T-32)$$

C)
$$\frac{dT}{dt} = 32 e^{-kt}$$

D)
$$\frac{dT}{dt} = -kt(T-10)$$

A)
$$\frac{dI}{dt} = -k(T-10)$$

B) $\frac{dI}{dt} = k(T-32)$
C) $\frac{dI}{dt} = 32 e^{-kt}$
D) $\frac{dI}{dt} = -kt(T-10)$
E) $\frac{dI}{dt} = kT(T-32)$

Ex: CSI Example: Tom the Cat Case file

Room temp 72'F

- Toms body was 96'F when found

- Body temp ½ hr later was 92°F

- When he was alive, temp was 101'F

Hint:
$$T_s = T_{normal} = T_o = T = T_{30} = T$$

5) Population and logistic growth

Constants: k and M

M = max capacity, upper limit, cary capacity, max. sustainable pop.

	Exponential	Logistical
Diff. Equation	$\frac{dP}{dT} = kp$	$\frac{dP}{dT} = kp(1 - \frac{P}{M})$
Equation:	$P = Pe^{kt}$	$P = \frac{M}{1 + Ae^{-kt}} .$

$$\frac{M}{M} \frac{1}{P(1-\frac{P}{M})} dp = kdt \cdot \frac{M}{M} \rightarrow P = m; \ m = mB; \ B = 1 \qquad P = 0; \ m = Am; \ A = 1$$

$$\int \frac{m}{P(m-P)} dp = \int k \, dt \longrightarrow \int \frac{2}{x(2-x)} dx \longrightarrow 2 \int \frac{1}{x(2-x)} dx$$

$$\frac{m}{P(m-P)} = \int \frac{A}{p} + \frac{B}{m-p} \longrightarrow m = A(m-P) = BP$$

$$\int \frac{1}{P} + \frac{1}{m-P} dP = \int k \, dt$$

$$\lim_{n \to \infty} |P| - \ln|m - P| = kt + c \longrightarrow (\ln|\frac{P}{m-P}| = kt + c) \cdot (-1)$$

$$\lim_{n \to \infty} |P| = Ae^{-kt} \longleftarrow |\frac{m-P}{P}| = Ae^{-kt} \longleftarrow \ln|\frac{m-P}{P}| = -kt - c$$

$$\lim_{n \to \infty} |P| = Ae^{-kt} \longrightarrow m = P(Ae^{-k(t)} + P) \longrightarrow m = P(Ae^{-k(0)} + 1) \longrightarrow P = \frac{m}{Ae^{-k(0)} + 1}$$

Ex: The max bear population in a park is 100. The population @ t=0 is 10 (t is measured in years.) The constant of proportionality is k=0.1

- a) Write a differential equation to model the population.
- b) Solve the differential equation.

Ex: Suppose that the growth of a population y = y(t) is given by the logistic equation $\frac{60}{5+7c^2}$

- a) What is the population at time t=0.
- b) What is the carrying capacity L? (Hint: It is not 60. Carry capacity = $\lim_{t \to \infty} ...$
- c) What is the constant k?