Day 5 Notes - Binomial Theorem

Day 5 Notes – Binomial Theorem

Warmup: Expand
$$(x + y)^3$$
. = $(x + y)(x + y)(x + y)$

$$\begin{array}{ccc}
x & y \\
x & x^2 & xy \\
y & xy & y^2
\end{array} = (x^2 + 2xy + y^2)(x+y) & x \\
y & xy & y^2
\end{array}$$

Let's look at the expansion of $(x + y)^n$

$$(x+y)^0=1$$

$$(x+y)^1 = x+y$$

$$(x + y)^2 = x^2 + 2xy + y^2$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

EX 1: Expand $(x + 3)^4$.

These numbers are the same numbers that are the coefficients of the binomial expansion:

$$= x^{4} + 12x^{3} + 54x^{2} + 108x + 81$$

The expansion of (a + b)4 is:

Notice that the exponents always add up to 4 with the a's going in descending order and the b's in ascending order.

Now, just substitute x in for "a" and 3 in for "b".

EX 2: Expand $(x-2y)^4$.

This time substitute x in for "a" and -2y for "b". Use ().

$$= \left\{ x^{4} - 8x^{3}y + 24x^{2}y^{2} - 32xy^{3} + 16y^{4} \right\}$$

The Binomial Theorem

In the expansion of $(x + y)^n$...

$$(x + y)^n = x^n + nx^{n-1}y + ... + nC_mx^{n-m}y^m + ... + nxy^{n-1} + y^n$$

The coefficient of x^{n-m}y^m is given by:

3: Find the following binomial coefficients.

EX 4: Find the 6^{th} term in the expansion of $(3a + 2b)^{12}$.

(Using the Binomial Theorem, let x=3a and y=2b, and note that in the 6^{th} term, the exponent of y is m=5 and the exponent of x is n-m=12-5=7.)

Consequently, the 6th term of the expansion is:

$$_{12}C_{5}X^{7}Y^{5} = 792(3a)^{7}(2b)^{5}$$

= $[55,427,328a^{7}b^{5}]$

Day 5 Homework

Binomial Theorem

Find each coefficient described.

1) Coefficient of vu^2 in expansion of $(v-5u)^3$

3) Coefficient of x^2y^2 in expansion of $(x-2y)^4$

Find each term described.

5) 2nd term in expansion of $(v + 4u)^4$

2) Coefficient of m^2 in expansion of $(4-m)^3$

12

4) Coefficient of v in expansion of $(3v-1)^4$

-12

6) 4th term in expansion of $(n+5)^3$

125

Expand completely.

7)
$$(u-v)^4$$

4-413, Haz 2-4113+V4

9)
$$(x-3)^4$$

x4-12x3+54x2-108x+81

8)
$$(4y-x)^3$$

6443-4727x2-x

10)
$$(4v+1)^3$$

64v3+48v2+12v+1