Warm Up:

Parameterizations of an Equation:

Eliminate the parameter for the following equations:

2.
$$x = t^{2}$$
 and $y = t + 1$
 $X = (y-1)^{2}$ $y-1 = t$
 $x = y^{2} - 2y + 1$

Notes:

Parameterization of a line is the equation of the line in parametric form. In other words, we are going to separate the x and y coordinates and describe how each of them change in a function of a parameter t, usually time.

Example 1: Find the parameterization of the line segment with endpoints (2, 4) and (5)9).

$$\Delta X = 5 - 2 = 3$$

 $\Delta Y = 9 - 4 = 5$

Example 2: Find the parameterization of the line through the point (-2,4) and (1,2)

$$X = -2 + 3t$$

 $Y = 4 - 2t$

$$\Delta X = 1 - -2 = 3$$

 $\Delta Y = 2 - 4 = -2$

CIRCLES (These aren't functions, but now can be graphed! Woohoo!!)

Thinking of the Ferris Wheel, we can come up with a parameterization for a circle:

X= rcost y=rsint a. Now, make a circle with radius 5

- b. Make Part a. go around 2x
- c. Make Part a. go clockwise

d. Make Part a. start at 10,0,
e. Make the center of Part a. be (4,-2)

x=5cost

Center (hik):

Ex) Parameterize a circle with r=11 and center (0,3).

$$X = 11 cost$$

 $Y = 11 sint + 3$

ELLIPSES (This is the same idea as with circles with $\cos^2 t + \sin^2 t = 1$... just one side is longer.)

Ex) How can we represent an ellipse with center (0, 0) with vertex (0, 4) and b=3 starting at (0, 4) and rotating counterclockwise?

$$X = 3 \cos t$$
 $Y = 4 \sin t$
 $T = t \leq 5 T$
 $T = t \leq 5 T$
 $T = x$
 $T = x$

What happens if you increase the interval $0 \le t < 4\pi$?

2 full rotations/cycle

How would you go the opposite way around the ellipse?

Make y negative!

Ex) Parameterize an ellipse with a center of (-3,5), a horizontal major axis length of 12, and a vertical minor axis length of 8.

1 y - 6=4

$$X = 6 \cos t - 3$$

$$Y = 4 \sin t + 5$$

Word Problems

Example 1: Wayne and Garth are in a Foot Race. Wayne can sprint at a rate of 20 ft/sec. Garth an sprint at a rate of 18 ft/sec. Wayne gives Garth a 4ft head start. The parametric equations to odel the race are:

 $X_1 = 18t$

 $y_1 = 3$ (This number doesn't matter, we can pretend that this is the lane #) $y_2 = 5$

 $X_2 = 20t - 4$ $y_2 = 5$

=300 ft

a) Find a viewing window to simulate a 100 yard dash. Mode: simul. T = 0, Tstep = .05...

Let X be at least 300

b) Who is ahead after 3 seconds and by how much? (We can use TRACE to do this.)

Example 2: Grayson Allen and Theo Pinson are sprinting a race. Theo can sprint at the rate of 24 ft/sec and Grayson can sprint at 20 ft/sec. Theo knows that Grayson loves to trip people so he gives him a 10 ft head start. The race they are running is the 100 yard dash.

a) Find the parametric equations to model Theo and Grayson's race.

Theo: X1= 24t-10

b) Who wins?

reaches K=300 ft first = X

Parabolas

The trigonometric functions can also be used with parabolas if we think of the initial velocity in terms of the vertical and horizontal components of the velocity vector.

initial $=V_0$ $v_0 \sin \theta$: vertical component

V₀ cos θ: horizontal component

Recall: Distance = rate x time

As a result, Horizontal motion can be defined as: $x = (V_0 \cos \theta)t$

The Vertical motion is:
$$y = -16t^2 + (v_0 \sin \theta) t + h$$

(h = initial height at t = 0, height is in feet)

n=3

Vo = 150

Example 1: Kevin hits a baseball at 3 feet above the ground with an initial speed of 150 ft/sec at an angle of 20° with the horizontal. If the outfield wall is 20 feet high and 400 feet away from Kevin, will he hit a homerun?

0=20°

x=(150cos(20°))t

*We TRACE to find max: X = 225.5 ft, y= 44.1 ft

y=-16t2 +(1505in (2001)t +3

Set: 0 = t<4, xmin=0, xmax=500, xscl=25, ymin=0, How long will the ball be in the air?

ymax=100, ysc1=20

(USL Trace)

LOOK at Table. (Znd)

MINDOW Indep. (ASK)

Between 3.2 + 3.3 sec.

Between 2.83 < t < 2.84, we See when x>400, y <20. (No

What angle will be necessary to hit the ball over the wall?

Class Discussion ...

Example 2: Les is riding on a Ferris Wheel with a radius of 30 feet. The bottom of the wheel is 10 feet off the ground. The wheel is turning counterclockwise at a rate of 1 revolution every 10 seconds. Les is sitting at 0°. Find the parametric equations to model Les's ride. Find his position 22 seconds into the ride.

X=30 cost. Y=30 sixt +10

X=30005 It Y=3030 It +10

When T=22, X=9.27 ft (horizontal)

and y=38.5 ft (vertical).