SECTION 6.3 EXERCISES

In Exercises 1-4, match the parametric equations with their graph. Identify the viewing window that seems to have been used.

1.
$$x = 4 \cos^3 t$$
, $y = 2 \sin^3 t$ 2. $x = 3 \cos t$, $y = \sin 2t$

2.
$$x = 3 \cos t$$
, $y = \sin 2t$

3.
$$x = 2 \cos t + 2 \cos^2 t$$
, $y = 2 \sin t + \sin 2t$

4.
$$x = \sin t - t \cos t$$
, $y = \cos t + t \sin t$

In Exercises 5 and 6, (a) complete the table for the parametric equations and (b) plot the corresponding points.

5.
$$x = t + 2, y = 1 + 3/t$$

$$\begin{array}{c|ccccc}
t & -2 & -1 & 0 & 1 & 2 \\
\hline
x & & & & & & \\
\end{array}$$

$$6. x = \cos t, y = \sin t$$

t	0	$\pi/2$	π	$3\pi/2$	2π
\overline{x}		2			
у					

In Exercises 7–10, graph the parametric equations $x = 3 - t^2$, y = 2t, in the specified parameter interval. Use the standard viewing window.

7.
$$0 \le t \le 10$$

8.
$$-10 \le t \le 0$$

9.
$$-3 \le t \le 3$$

10.
$$-2 \le t \le 4$$

In Exercises 11-26, eliminate the parameter and identify the graph of the parametric curve.

11.
$$x = 1 + t, y = t$$

12.
$$x = 2 - 3t, y = 5 + t$$

13.
$$x = 2t - 3$$
, $y = 9 - 4t$, $3 \le t \le 5$

14.
$$x = 5 - 3t$$
, $y = 2 + t$, $-1 \le t \le 3$

15. $x = t^2$, y = t + 1 [Hint: Eliminate t and solve for x in terms

16.
$$x = t$$
, $y = t^2 - 3$ **17.** $x = t$, $y = t^3 - 2t + 3$

7.
$$x = t, y = t^3 - 2t + 3$$

18. $x = 2t^2 - 1$, y = t [Hint: Eliminate t and solve for x_{in}] terms of y.]

19. $x = 4 - t^2$, y = t [Hint: Eliminate t and solve for x in term of y.]

20.
$$x = 0.5t$$
, $y = 2t^3 - 3$, $-2 \le t \le 2$

21.
$$x = t - 3$$
, $y = 2/t$, $-5 \le t \le 5$

22.
$$x = t + 2$$
, $y = 4/t$, $t \ge 2$

23.
$$x = 5 \cos t$$
, $y = 5 \sin t$ 24. $x = 4 \cos t$, $y = 4 \sin t$

25.
$$x = 2 \sin t$$
, $y = 2 \cos t$, $0 \le t \le 3\pi/2$

26.
$$x = 3 \cos t$$
, $y = 3 \sin t$, $0 \le t \le \pi$

In Exercises 27-32 find a parametrization for the curve

27. The line through the points (-2, 5) and (4, 2).

28. The line through the points (-3, -3) and (5, 1).

29. The line segment with endpoints (3, 4) and (6, -3).

30. The line segment with endpoints (5, 2) and (-2, -4).

31. The circle with center (5, 2) and radius 3.

32. The circle with center (-2, -4) and radius 2.

Exercises 33-36 refer to the graph of the parametric equations

$$x = 2 - |t|$$
, $y = t - 0.5$, $-3 \le t \le 3$

given below. Find the values of the parameter t that produces the graph in the indicated quadrant.

[-5, 5] by [-5, 5]

33. Quadrant I

34. Quadrant II

35. Quadrant III

36. Quadrant IV

37. Simulating a Foot Race Ben can sprint at the rate of 24 ft/sec. Jerry sprints at 20 ft/sec. Ben gives Jerry a 10-ft head start. The parametric equations can be used to model a race.

$$x_1 = 20t, y_1 = 3$$

$$x_2 = 24t - 10$$
, $y_2 = 5$

(a) Find a viewing window to simulate a 100-yd dash. Graph simulaneously with t starting at t = 0 and Tstep = 0.05.

(b) Who is ahead after 3 sec and by how much?

38. Capture the Flag Two opposing players in "Capture the Flag" are 100 ft apart. On a signal, they run to capture a flag that is on the ground midway between them. The faster runner, however, hesitates for 0.1 sec. The following