Task 4: Graphing Polar Equations

This is a tutorial on graphing polar equations by hand, or sketching, to help you gain a deeper understanding. Points in polar coordinates are represented by (r, θ) where r is the distance from the pole and θ is the direction angle. The method of point-by-point is used here.

Example 1: Graph the polar equation given by $r = 4 \cos \theta$ and identify the graph.

We first construct a table of values using the special angles and their multiples.
Substitute the "main" values of θ into the equation to find out what r will equal.

θ	r
0	
Pi/6	
Pi / 4	
Pi / 3	
Pi / 2	
2 Pi / 3	VI de la constant
3 Pi / 4	
5 Pi / 6	
Pi	

- We stop the calculations at θ = Pi because the values will repeat.
- We now plot the above points on a grid of polar coordinates, as shown to the right. You need to pay special attention to points with a negative value of r. $(t = \theta)$
- We now join the points drawing a smooth curve as seen on the next page.

Example 2: Graph the polar equation given by $r = 2 + 2 \sin \theta$ and identify the graph.

We first construct a table of values using the special angles and their multiples.
FILL OUT THE TABLE BELOW.

θ	r
0	
Pi / 6	
Pi / 4	
Pi/3	
Pi / 2	
2 Pi / 3	
3 Pi / 4	
5 Pi / 6	
Pi	
7 Pi / 6	
5 Pi / 4	
4 Pi / 3	
3 Pi / 2	
5 Pi / 3	
7 Pi / 4	
11 Pi / 6	

 We plot the points in the table then join them by a smooth curve. The points and the graph of the given polar equation are shown below.

This graph is called a CARDIOID.

Example 3: Graph the polar equation given by $r = 4 \cos 2\theta$. FILL IN TABLE AND GRAPH.

θ	r
0	
Pi/6	-
Pi/4	
Pi/3	
Pi/2	
2 Pi / 3	partition of the street
3 Pi / 4	
5 Pi / 6	A supply the major of the
Pi	
7 Pi / 6	
5 Pi / 4	
4 Pi / 3	
3 Pi / 2	
5 Pi / 3	
7 Pi / 4	
11 Pi / 6	

We first plot the points in the table then join them by a smooth curve. YOUR GRAPH SHOULD LOOK LIKE A FLOWER!

Example 4: Graph the polar equation given by $r = 2 + \cos \theta$.

θ	r
0	
Pi/6	
Pi / 4	
Pi/3	
Pi / 2	
2 Pi / 3	
3 Pi / 4	
5 Pi / 6	
Pi	
7 Pi / 6	
5 Pi / 4	
4 Pi / 3	
3 Pi / 2	
5 Pi / 3	
7 Pi / 4	
11 Pi / 6	

I. Using your Calculator to HELP YOU:

To graph in POLAR form in the calculator, you must follow these steps:

- MODE
- On the fourth line, select POL
- Also in MODE, make sure you are in RADIANS
- Y = (it should now say r =)
- Type in the equation
- ZOOM TRIG
- Change the window as necessary for each problem
- TBLSET set TblStart = 0 and Δ Tbl = $\pi/6$ (this will help you fill out tables on your paper)

II. PRACTICE WITH DIFFERENT TYPES

 The Archimedean spiral (also known as the arithmetic spiral) is a <u>spiral</u> named after the 3rd century BC <u>Greek mathematician Archimedes</u>. It is the <u>locus</u> of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant <u>angular velocity</u>. Equivalently, in <u>polar coordinates</u> (r, θ) it can be described by the equation

$$r = a + b\theta$$

with $\underline{real \ numbers}\ a$ and b. Changing the parameter a will turn the spiral, while b controls the distance between successive turnings.

Example: In your calculator, graph $r = 1 + \theta$ from 0 to 8π .

WINDOW: Change θmax to 8π.

Draw a sketch of your Archimedean Spiral:

2. Limacons with an Inner Loop

Example: Use the TABLE of your calculator to help you graph the following BY HAND:

$$r = \frac{1}{2} + \cos t$$

Fill out the table on the next page and graph.

t	r
0	
Pi/6	
Pi/4	
Pi/3	
Pi/2	
2 Pi / 3	***************************************
3 Pi / 4	
5 Pi / 6	
Pi	
7 Pi / 6	
5 Pi / 4	
4 Pi / 3	
3 Pi / 2	
5 Pi / 3	
7 Pi / 4	
11 Pi / 6	

3. A Rose Within A Rose

Example: Use the TABLE of your calculator to help you graph the following BY HAND: $r = 1 - 2 \sin(3 \theta)$

θ	r
0	
Pi/6	
Pi/4	
Pi/3	
Pi/2	
2 Pi / 3	
3 Pi / 4	
5 Pi / 6	
Pi	
7 Pi / 6	
5 Pi / 4	
4 Pi / 3	
3 Pi / 2	
5 Pi / 3	
7 Pi / 4	
11 Pi / 6	

Graphs of Polar Equations

Consider each polar graph. Classify the curve; and determine if the graph is symmetric with respect to the origin, polar axis, and line $\theta=\pi/2$.

1)

2)

3)

4)

