POLAR Review

Polar-Cartesian Relationships

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

$$x = r \cos \theta$$

 $y = r\sin\theta$

Compare and Contrast

 $\frac{dr}{d\theta} = \begin{array}{l} \text{Rate of change in} \\ \text{radius (relative to} \\ \text{the pole) as theta} \\ \text{changes.} \end{array}$

 $\frac{dy}{dx} = \text{Slope of the tangent} \\ (a.k.a. \text{ Slope of Polar} \\ Curve)$

Other Rates of Change to Think About

• $\frac{ay}{dt}$ is the change in vertical position with respect to "t"

dy

• $\frac{d}{d\theta}$ is the change in vertical position with respect to "theta"

Likewise for horizontal position

dr

dt is the change in "radius" (relative to the pole) with respect to "t"

For the curve, $r = 1 + \sin \theta$

- A) Find the equation for the slopes of the tangent lines
- B) Find the slope when $\theta = 0$
- C) Find where there are horizontal tangents

Simplify to
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}} = \frac{\cos\theta\sin\theta + (1+\sin\theta)(\cos\theta)}{\cos\theta\cos\theta - (1+\sin\theta)\cos\theta}$$
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

- For the curve, $r = 1 + \sin \theta$
- A) Find the equation for the slopes of the tangent lines
- B) Find the slope when $\theta = 0$
- C) Find where there are horizontal tangents

For the curve, $r = 1 + \sin \theta$

- A) Find the equation for the slopes of the tangent lines
- B) Find the slope when
- C) Find where there are horizontal tangents

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\cos\theta + 2\sin\theta\cos\theta}{-\sin\theta - \sin^2\theta + \cos^2\theta} = 0$$

$$\frac{dy}{d\theta} = 0 \Rightarrow \cos\theta (1 + 2\sin\theta) = 0$$

$$\cos\theta = 0 \qquad 1 + 2\sin\theta = 0$$

$$\theta = \frac{\pi}{2}, \frac{3\pi}{2} \qquad \theta = \frac{11\pi}{6}, \frac{7\pi}{6}$$

$$ut...\frac{3\pi}{2} \qquad \text{gives a zero for } \frac{dx}{d\theta}$$

So we discard it.

Area bounded by a polar graph:

Finding the limits...

- Normally, you can use the limits of $0 and 2\pi$ unless that will cause the graph to draw over itself.
- Sketch it by plotting some points and check!
- You can also use symmetry to simplify the integral

Find the area within the curve:

Let's try this one on the calculator...

TI-83

How would you find the shaded areas?

Piecewise

$$\frac{1}{2}\int_{0}^{b}g^{2}\left(\theta\right)d\theta+\frac{1}{2}\int_{b}^{\frac{\pi}{2}}f^{2}\left(\theta\right)d\theta$$

$$R^2-r^2$$

$$\frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}p^{2}(\theta)-h^{2}(\theta) d\theta$$

Length of Polar Curve

$$L = \int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$