Midterm Review

Integration Tips

- Try to algebraically manipulate integrand and use reverse Power Rule
- Check for Inverse Trig
- U-Substitution
- Consider Partial Fractions
- Integration By Parts (Tabular??)

Summary of Limit Forms

$$
\begin{array}{ll}
\text { Determinate } & \text { Indeterminate } \\
\frac{0}{\text { nonzero }} \text { or } \frac{0}{ \pm \infty}=0 & \frac{0}{0}, \frac{\infty}{\infty} \\
\frac{ \pm \infty}{\text { nonzero }}= \pm \infty & 0 \cdot \infty \\
\frac{\text { nonzero }}{0}= \pm \infty & \infty-\infty \\
\text { nonzero } \cdot \pm \infty= \pm \infty & 1^{\infty}, 0^{0}, \infty^{0}
\end{array}
$$

Summary of Techniques

$\frac{0}{0}, \frac{\infty}{\infty}$
Use L'Hopital directly
$0 \cdot \infty$
Rewrite as division, then use L'Hopital
$\infty-\infty$
Find a common denominator then use L'Hopital.
$1^{\infty}, 0^{0}, \infty^{0}$ Use In to pull exponent out then use L'Hopital.

Polar vs Cartesian

Polar

Cartesian
$r \cos \theta=2$

$$
x=2
$$

$r^{2} \cos \theta \sin \theta=4$

$$
x y=4
$$

$r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=1$

$$
x^{2}-y^{2}=1
$$

$$
r=1+2 r \cos \theta
$$

$$
y^{2}-3 x^{2}-4 x-1=0
$$

$$
r=1-\cos \theta
$$

$$
x^{4}+y^{4}+2 x^{2} y^{2}+2 x^{3}+2 x y^{2}-y^{2}=0
$$

Polar vs Cartesian

Cartesian to Polar
 $$
r^{2}=x^{2}+y^{2}
$$
 $\tan \theta=\underline{y}$
 x

Polar to Cartesian

$\cos \theta=\frac{x}{r} \Leftrightarrow x=r \cos \theta$
$\sin \theta=\frac{y}{r} \Leftrightarrow y=r \sin \theta$

Rose Curves:

$$
r=a \sin (n \theta) \quad r=a \cos (n \theta)
$$

\sim Pick cosine if a leaf is split by the x -axis

$\sim a$: length of petal from the pole (maximum r for the function)

\mathbf{n}	\# petals	Domain (Period)
Even	$2 n$	$[0,2 \pi]$
Odd	n	$[0, \pi]$

Limacon Curves:

$$
r=a \pm b \sin (\theta) \quad r=a \pm b \cos (\theta)
$$

y-axis symmetry—pick sine
x-axis symmetry—pick cosine
\pm indicates the orientation on the axis

+ the orientation is on the positive axis
- the orientation is on the negative axis

Type of Limacon depends on the value of $\frac{a}{b}$

$\frac{a}{b}<1$ (which means $a<b$) Inner Loop

$$
\frac{a}{b}=1(\text { which means } a=b) \quad \text { Cardioid }
$$

$1<\frac{\mathrm{a}}{\mathrm{b}}<2$ (which means $\left.\mathrm{b}<\mathrm{a}<2 \mathrm{~b}\right) \quad$ Dimpled

$$
2 \leq \frac{a}{b}(\text { which means } 2 \mathrm{~b} \leq \mathbf{a}) \quad \text { Convex }
$$

Domain for all types is $[0,2 \pi]$.
Writing equations:
Calculate $\frac{\max +\min }{2}$ and $\frac{\max -\min }{2}$

Lengths and Areas

$$
\begin{aligned}
& L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
& A_{\text {enclosed_by_polar_curve }}=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta \\
& A=\frac{1}{2} \int_{\alpha}^{\beta} R^{2}-r^{2} d \theta
\end{aligned}
$$

Example Problem ...

For the curve, $r=1+\sin \theta$

A) Find the EQUATION for the slopes of the tangent lines
B) Find where there are horizontal tangents
C) Find the slope when $\theta=0$

Example Problem ...

For the curve, $r=1+\sin \theta$
A) Find the EQUATION for the slopes of the tangent lines

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

A) $\frac{d y}{d x}=\frac{\cos \theta+2 \sin \theta \cos \theta}{-\sin \theta-\sin ^{2} \theta+\cos ^{2} \theta}$
B) Find where there are horizontal tangents

$$
\frac{d y}{d x}=\frac{\cos \theta+2 \sin \theta \cos \theta}{-\sin \theta-\sin ^{2} \theta+\cos ^{2} \theta}
$$

$$
\begin{gathered}
\frac{d y}{d \theta}=0 \Rightarrow \cos \theta+2 \cos \theta \sin \theta=0 \Rightarrow \\
\cos \theta \quad 1+2 \sin \theta=0 \\
\cos \theta=0 \quad 1+2 \sin \theta=0 \\
\theta=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \theta=\frac{11 \pi}{6}, \frac{7 \pi}{6}
\end{gathered}
$$

We discard $\frac{3 \pi}{2}$ because it makes the derivative undefined

Example Problem ...

For the curve, $r=1+\sin \theta$
C) Find the slope when $\theta=0$

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

$$
\begin{aligned}
& \left.\frac{d r}{d \theta}\right|_{\theta=0}= \\
& r(0)= \\
& \sin (0)= \\
& \cos (0)=
\end{aligned}
$$

Finding SLOPE

Polar

Parametric

A vector is in standard position if the initial point is at the origin.

The component form of this vector is: $\quad \mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$

Order matters!
 Terminal Point - Initial Point

The nagnitude (length) of $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is $|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}}$

If $|\mathbf{v}|=1$ then \mathbf{v} is a unit vector.

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{d y}{d x}$

Vector $=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle=\langle d x, d y\rangle$

Parallel and Normal Unit Vectors

Parallel and Normal Unit Vectors

w and z are also tangent and normal vectors to v.

Example Problem

Find the unit vectors that are tangent and normal to the following parametrized curve at the point where $t=4$.

$$
x=\frac{t}{2}+1, \quad y=\sqrt{t}+1, \quad t \geq 0
$$

Review of position, velocity, and acceleration

$s(t)=$ Position at time t
$\mathrm{v}(\mathrm{t})=$ Velocity at time t
$a(t)=$ Acceleration at time t

$$
\begin{aligned}
& v(t)=\frac{d s}{d t} \\
& a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
\end{aligned}
$$

Models motion in I-dimension

Position, velocity, and acceleration in 2-dimensional space

$r(t)=$ Position at time t

$$
v(t)=\frac{d r}{d t}
$$

$\mathrm{v}(\mathrm{t})=$ Velocity at time t
$\mathrm{a}(\mathrm{t})=$ Acceleration at time t

$$
a(t)=\frac{d v}{d t}=\frac{d^{2} r}{d t^{2}}
$$

Standard Unit Vectors

Any vector $\mathbf{v}=\langle a, b\rangle$ can be written as a linear combination of the two standard unit vectors.

$$
\xrightarrow{\langle a, b\rangle=a i+b j}
$$

SPEED vs VELOCITY

$$
\text { Speed }=\mid \mathbf{v} \mathbf{t}
$$

"Speed" is magnitude of velocity. Speed has no direction. Velocity has direction.

Direction of motion $=\frac{\text { velocity vector }}{\text { speed }}=\frac{\mathbf{v} t}{|\mathbf{v} t|}$

"Direction" is a unit vector that indicates direction but not magnitude.

Practice....

Solve the initial value problem.

$$
\frac{d^{2} r}{d t^{2}}=-2 \mathbf{i}-2 \mathbf{j},\left.\quad \frac{d r}{d t}\right|_{t=1}=4 \mathbf{i}, \quad \mathbf{r}(1)=3 \mathbf{i}+3 \mathbf{j}
$$

