

Midterm Review

Integration Tips

- Try to algebraically manipulate integrand and use reverse Power Rule
- Check for Inverse Trig
- U-Substitution
- Consider Partial Fractions
- Integration By Parts (Tabular??)

Summary of Limit Forms

Determinate

$$\frac{\pm\infty}{nonzero} = \pm\infty$$

Indeterminate

 $\frac{0}{\infty}, \frac{\infty}{\infty}$

 $0 \cdot \infty$

$$\frac{nonzero}{0} = \pm \infty$$

nonzero $\cdot \pm \infty = \pm \infty$

 $\infty - \infty$

 $1^{\infty}, 0^0, \infty^0$

Summary of Techniques

Use L'Hopital directly

 ∞

 $\overline{0}, \overline{\infty}$

 $0 \cdot \infty$ Rewrite as division, then use L'Hopital

 $\infty - \infty$ Find a common denominator then use L'Hopital.

 $1^{\infty}, 0^{0}, \infty^{0}$ Use *In* to pull exponent out then use L'Hopital.

Polar vs Cartes	ian
Polar	Cartesian
$r\cos\theta = 2$	<i>x</i> = 2
$r^2 \cos \theta \sin \theta = 4$	xy = 4
$r^2 \cos^2 \theta - r^2 \sin^2 \theta = 1$	$x^2 - y^2 = 1$
$r=1+2r\cos\theta$	$y^2 - 3x^2 - 4x - 1 = 0$
$r=1-\cos\theta$	$x^{4} + y^{4} + 2x^{2}y^{2} + 2x^{3} + 2xy^{2} - y^{2} = 0$

Cartesian to Polar

$$r^2 = x^2 + y^2$$

$$\tan \theta = \frac{y}{x}$$
Polar to Cartesian

$$\cos \theta = \frac{x}{r} \iff x = r \cos \theta$$
$$\sin \theta = \frac{y}{r} \iff y = r \sin \theta$$

Rose Curves:

$r = a \sin(n\theta)$ $r = a \cos(n\theta)$

~Pick cosine if a leaf is split by the x-axis

~a: length of petal from the pole (maximum r for the function)

n	# petals	Domain (Period)
Even	2n	[0,2 π]
Odd	n	[0, π]

Limacon Curves:

 $r = a \pm b \sin(\theta)$ $r = a \pm b \cos(\theta)$

y-axis symmetry—pick sine x-axis symmetry—pick cosine

± indicates the orientation on the axis
+ the orientation is on the positive axis
- the orientation is on the negative axis

Type of Limacon depends on the value of

1

$\frac{a}{b}$	Type of Limacon Curve	
a < 1 (which means a < b)	Inner Loop	
$\frac{a}{b} = 1$ (which means $a = b$)	Cardioid	
$<\frac{a}{b}<2$ (which means b < a < 2b)	Dimpled	
$2 \le \frac{a}{b}$ (which means $\mathbf{2b} \le \mathbf{a}$)	Convex	
Oomain for all types is [0,2π]. Vriting equations:		
Calculate $\frac{\max + \min}{\alpha}$	$nd \frac{\max - \min}{2}$	

2

2

Calculate

Lengths and Areas

$$L = \int_{\alpha}^{\beta} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$
$$A_{enclosed_by_polar_curve} = \int_{\alpha}^{\beta} \frac{1}{2} r^{2} d\theta$$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} R^2 - r^2 d\theta$$

```
Example Problem ...
```

- For the curve, $r = 1 + \sin \theta$
- A) Find the EQUATION for the <u>slopes</u> of the tangent lines
- B) Find where there are horizontal tangents
- C) Find the slope when $\theta = 0$

Example Problem ...

For the curve, $r = 1 + \sin \theta$

A) Find the EQUATION for the <u>slopes</u> of the tangent lines

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

A)
$$\frac{dy}{dx} = \frac{\cos\theta + 2\sin\theta\cos\theta}{-\sin\theta - \sin^2\theta + \cos^2\theta}$$

Example Problem ...

For the curve, $r = 1 + \sin \theta$ C) Find the slope when $\theta = 0$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

$$\left. \frac{dr}{d\theta} \right|_{\theta=0} = \underline{\qquad}$$

r(0) =_____

sin(0) =

 $\cos(0) =$ _____

Finding SLOPE

ddy d hetadx $dx_{/}$

Polar

Parametric

 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \frac{d^2y}{dx^2} = \frac{d}{dx}(y') = \frac{\frac{d}{dx}}{\frac{dt}{dt}}$ $L = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

If
$$|\mathbf{v}| = 1$$
 then \mathbf{v} is a unit vector.

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{dy}{dx}$$

Vector =
$$\langle x_2 - x_1, y_2 - y_1 \rangle = \langle dx, dy \rangle$$

Parallel and Normal Unit Vectors Vector *u* is a unit vector parallel to vector v. $\overset{v}{\checkmark} \quad u = \frac{v}{|v|} = \left\langle \frac{v_1}{|v|}, \frac{v_2}{|v|} \right\rangle$ n -4 -3 -2 -1 2 3 4 Vector *n* is a unit vector normal to vector v. $n = \langle -u_2, u_1 \rangle$ Opposite -31 Reciprocal

Parallel and Normal Unit Vectors

w and z are also tangent and normal vectors to v.

Example Problem

Find the unit vectors that are tangent and normal to the following parametrized curve at the point where t=4.

$$x = \frac{t}{2} + 1, \quad y = \sqrt{t} + 1, \quad t \ge 0$$

Review of position, velocity, and acceleration

s(t) = Position at time t
v(t) = Velocity at time t
a(t) = Acceleration at time t

Position, velocity, and acceleration in 2-dimensional space

r(t) = Position at time t
v(t) = Velocity at time t
a(t) = Acceleration at time t

$$v(t) = \frac{dr}{dt}$$

$$a(t) = \frac{dv}{dt} = \frac{d^2r}{dt^2}$$

Any vector $\mathbf{v} = \langle a, b \rangle$ can be written as a linear

combination of the two standard unit vectors.

SPEED vs VELOCITY

Speed =
$$\begin{vmatrix} \mathbf{v} & \mathbf{t} \end{vmatrix}$$

"Speed" is magnitude of velocity. Speed has no direction. Velocity has direction.

Direction of motion =
$$\frac{\text{velocity vector}}{\text{speed}} = \frac{\mathbf{v} \ t}{|\mathbf{v} \ t|}$$

"Direction" is a unit vector that indicates direction but not magnitude.

Practice.... Solve the initial value problem.

