Intro. to Unit 3 HW

DIRECT, INVERSE, & JOINT VARIATION

Definition: Variation is the relationship between variables that describes how they react to each other.

DIRECT VARIATION:

Ex 1: Suppose you make \$8 per hour at your job.

If you work 5 hours, you make \$ 40. If you work 7 hours, you make \$ 56.

As the hours you work increase, the money you make _increases.

Write an equation using M for money made and h for hours worked: M = 8

This is called a direct relationship – as one variable increases, the other one increases. Likewise, if one variable decreases, the other variable decreases

Constant of Variation = kDirect Variation General Equation: y=kx

Ex 2: Find the missing variable. (Hint: Use one pair of variables to solve for "k" in the general equation. Then use "k" and your given variable to find the missing variable.)

a) If y varies directly as x and y = 12 when x = -3, find y when x = 16.

b) If y varies directly as x and x=15 when y=5, find x when y=9.

$$\frac{2}{15} = \frac{9}{x} \Rightarrow 5x = 135 \Rightarrow x = 27$$

JOINT VARIATION: 11.

way true of the form the first of the first of the first of the <u>Definition</u>: When a variable varies directly with more than one variable, we call it <u>Joint</u> Variation.

For example, "z varies jointly with x and y" can be written as z = k c y, meaning z varies directly with the product of x and y. As x increases, z would moveases, z would decreases.

Ex 3: Find the missing variable: \sqrt{z} \sqrt{z} \sqrt{z} \sqrt{z} \sqrt{z} \sqrt{z} a) If y varies jointly as x and z and if y = -24 when x = 4 and z = 3, find y when x = -6 and z = 2.

b) Write an equation to model this situation: V varies jointly with w and h.

1 V= KWh Scanned by CamScanner

INVERSE VARIATION: III.

Ex 4: Suppose you take a road trip covering 210 miles on the highway. 3hr If you travel at a constant rate of 70 mph, how long would it take? As your rate increases, the time docreases Write an equation using r for rate and t for time: $\pm = \pm \rightarrow \downarrow$

This is called an inverse relationship - as one variable increases, the other decreases

Inverse Variation General Equation: <u>y=k/x</u> Constant of Variation = _

Ex 5: Find the missing variable:

s inversely as x and y = 22 when x = -2, find y when x = -11.

$$-2(22) = -11(4) \rightarrow -44 = -114 \rightarrow 4 = -114$$

b) If y varies inversely as x and y = 30 when x = 5, find y when x = -3.

SUMMARY: IV.

Variation Type	Equation		
Direct K= +	y=KX		
Inverse K=XY	Y=X		
Joint K= X	Y=KXZ		

Ex 6: Determine whether each is an example of direct, inverse or joint variation (or neither). Then find the constant of variation.

#1.15.2	a) $d = 60t$	$y = \frac{5}{x}$	c) $y = \frac{x}{2}$	d) $y = 4x - 3$	e) $\frac{100}{r} = t$	f) $I = 1000rt$
Variation Type:	Direct	inverse	Direct	N	Inverse	Joint
Constant:	WD	5.9	1/2	ther	100	1000

Ex 7: Time to travel 250 miles varies inversely with the rate (speed) of a car. Write an equation that shows this relationship and find the time the trip would take if traveling at 60 mph.

$$t = \frac{k}{r}$$
 $t = \frac{250}{60} = 4.16$ hours