Free Response Rubric Practice

Question 1

Let R be the region in the first and second quadrants bounded above by the graph of $y=\frac{20}{1+x^{2}}$ and below by the horizontal line $y=2$.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the x-axis.
(c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles. Find the volume of this solid.
$\frac{20}{1+x^{2}}=2$ when $x= \pm 3$
(a) Area $=\int_{-3}^{3}\left(\frac{20}{1+x^{2}}-2\right) d x=37.961$ or 37.962
(b) Volume $=\pi \int_{-3}^{3}\left(\left(\frac{20}{1+x^{2}}\right)^{2}-2^{2}\right) d x=1871.190$
(c) Volume $=\frac{\pi}{2} \int_{-3}^{3}\left(\frac{1}{2}\left(\frac{20}{1+x^{2}}-2\right)\right)^{2} d x$

$$
=\frac{\pi}{8} \int_{-3}^{3}\left(\frac{20}{1+x^{2}}-2\right)^{2} d x=174.268
$$

1 : correct limits in an integral in (a), (b), or (c)
$2:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integrand } \\ 1: \text { answer }\end{array}\right.$

Feedback from College Board

- Read the questions thoroughly and carefully.
- Ensure you can find an appropriate calculator window to see entire graph
- Make sure you are working with the correct region of the graph
- Clearly show the integral in addition to the numerical answer
- Know how to use your calculator to find the numerical answer

Question 2

The amount of water in a storage tank, in gallons, is modeled by a continuous function on the time interval $0 \leq t \leq 7$, where t is measured in hours. In this model, rates are given as follows:
(i) The rate at which water enters the tank is $f(t)=100 t^{2} \sin (\sqrt{t})$ gallons per hour for $0 \leq t \leq 7$.
(ii) The rate at which water leaves the tank is

$$
g(t)=\left\{\begin{array}{r}
250 \text { for } 0 \leq t<3 \\
2000 \text { for } 3<t \leq 7
\end{array}\right. \text { gallons per hour. }
$$

The graphs of f and g, which intersect at $t=1.617$ and $t=5.076$, are shown in the figure above. At time $t=0$, the amount of water in the tank is 5000 gallons.
(a) How many gallons of water enter the tank during the time interval $0 \leq t \leq 7$? Round your answer to the nearest gallon.
(b) For $0 \leq t \leq 7$, find the time intervals during which the amount of water in the tank is decreasing. Give a reason for each answer.
(c) For $0 \leq t \leq 7$, at what time t is the amount of water in the tank greatest? To the nearest gallon, compute the amount of water at this time. Justify your answer.
(a) $\int_{0}^{7} f(t) d t \approx 8264$ gallons
(b) The amount of water in the tank is decreasing on the intervals $0 \leq t \leq 1.617$ and $3 \leq t \leq 5.076$ because $f(t)<g(t)$ for $0 \leq t<1.617$ and $3<t<5.076$.
(c) Since $f(t)-g(t)$ changes sign from positive to negative only at $t=3$, the candidates for the absolute maximum are at $t=0,3$, and 7 .

t (hours)	gallons of water
0	5000
3	$5000+\int_{0}^{3} f(t) d t-250(3)=5126.591$
7	$5126.591+\int_{3}^{7} f(t) d t-2000(4)=4513.807$

The amount of water in the tank is greatest at 3 hours. At that time, the amount of water in the tank, rounded to the nearest gallon, is 5127 gallons.
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { intervals } \\ 1: \text { reason }\end{array}\right.$
$\int 1$: identifies $t=3$ as a candidate
1 : integrand
5: 1 : amount of water at $t=3$
1: amount of water at $t=7$
1 : conclusion

Feedback from College Board

- Use clear, unambiguous language in free-response solutions.
- Recognize the difference between an amount and a rate
- Avoid intermediate rounding
- Present answers to required number of decimals.
- When finding extrema on a closed interval, include critical points and the endpoints.

Question 3

The graphs of the polar curves $r=2$ and $r=3+2 \cos \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$.
(a) Let R be the region that is inside the graph of $r=2$ and also inside the graph of $r=3+2 \cos \theta$, as shaded in the figure above. Find the area of R.
(b) A particle moving with nonzero velocity along the polar curve given by $r=3+2 \cos \theta$ has position $(x(t), y(t))$ at time t, with $\theta=0$ when $t=0$. This particle moves along the curve so that $\frac{d r}{d t}=\frac{d r}{d \theta}$.
 Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
(c) For the particle described in part (b), $\frac{d y}{d t}=\frac{d y}{d \theta}$. Find the value of $\frac{d y}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
(a) Area $=\frac{2}{3} \pi(2)^{2}+\frac{1}{2} \int_{2 \pi / 3}^{4 \pi / 3}(3+2 \cos \theta)^{2} d \theta$

$$
=10.370
$$

(b) $\left.\frac{d r}{d t}\right|_{\theta=\pi / 3}=\left.\frac{d r}{d \theta}\right|_{\theta=\pi / 3}=-1.732$

The particle is moving closer to the origin, since $\frac{d r}{d t}<0$ and $r>0$ when $\theta=\frac{\pi}{3}$.
(c) $y=r \sin \theta=(3+2 \cos \theta) \sin \theta$
$\left.\frac{d y}{d t}\right|_{\theta=\pi / 3}=\left.\frac{d y}{d \theta}\right|_{\theta=\pi / 3}=0.5$
The particle is moving away from the x-axis, since $\frac{d y}{d t}>0$ and $y>0$ when $\theta=\frac{\pi}{3}$.

1: area of circular sector
2 : integral for section of limaçon
4 : 1 : integrand
1 : limits and constant
1: answer

$$
2:\left\{\begin{array}{l}
1:\left.\frac{d r}{d t}\right|_{\theta=\pi / 3} \\
1: \text { interpretation }
\end{array}\right.
$$

Feedback from College Board

- Know your polar formulas.
- Do not just memorize formulas and procedures. Think about the underlying mathematics of the situation.
- Know how to find intersections of polar functions
- Know how to deal with a piece-wise polar area problem
- Know how to interpret your answers. A negative dr/dt means it is getting closer to the pole. Describe the particle, not the radius.
- Describe value of a derivative as an increase or decrease in the quantity being considered, not just a change.

Question 4

Let f be the function defined for $x>0$, with $f(e)=2$ and f^{\prime}, the first derivative of f, given by $f^{\prime}(x)=x^{2} \ln x$.
(a) Write an equation for the line tangent to the graph of f at the point $(e, 2)$.
(b) Is the graph of f concave up or concave down on the interval $1<x<3$? Give a reason for your answer.
(c) Use antidifferentiation to find $f(x)$.
(a) $f^{\prime}(e)=e^{2}$

An equation for the line tangent to the graph of f at the point $(e, 2)$ is $y-2=e^{2}(x-e)$.
(b) $f^{\prime \prime}(x)=x+2 x \ln x$.

For $1<x<3, x>0$ and $\ln x>0$, so $f^{\prime \prime}(x)>0$. Thus, the graph of f is concave up on $(1,3)$.
(c) Since $f(x)=\int\left(x^{2} \ln x\right) d x$, we consider integration by parts.

$$
\begin{array}{ll}
u=\ln x & d v=x^{2} d x \\
d u=\frac{1}{x} d x & v=\int\left(x^{2}\right) d x=\frac{1}{3} x^{3}
\end{array}
$$

Therefore,

$$
\begin{aligned}
f(x) & =\int\left(x^{2} \ln x\right) d x \\
& =\frac{1}{3} x^{3} \ln x-\int\left(\frac{1}{3} x^{3} \cdot \frac{1}{x}\right) d x \\
& =\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C .
\end{aligned}
$$

Since $f(e)=2,2=\frac{e^{3}}{3}-\frac{e^{3}}{9}+C$ and $C=2-\frac{2}{9} e^{3}$.
Thus, $f(x)=\frac{x^{3}}{3} \ln x-\frac{1}{9} x^{3}+2-\frac{2}{9} e^{3}$.
$2:\left\{\begin{array}{l}1: f^{\prime}(e) \\ 1: \text { equation of tangent line }\end{array}\right.$
$3:\left\{\begin{array}{l}2: f^{\prime \prime}(x) \\ 1: \text { answer with reason }\end{array}\right.$
$4:\left\{\begin{array}{l}2: \text { antiderivative } \\ 1: \text { uses } f(e)=2 \\ 1: \text { answer }\end{array}\right.$

Feedback from College Board

- Point-slope form is perfectly acceptable. No extra points for slope-intercept and you use valuable time and may lose a point.
- Sign charts are never, never, never enough to earn justification points.
- Know how to do Integration by Parts
- Remember the +C when integrating

Question 5

t (minutes)	0	2	5	7	11	12
$r^{\prime}(t)$ (feet per minute)	5.7	4.0	2.0	1.2	0.6	0.5

The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the balloon, in feet, is modeled by a twice-differentiable function r of time t, where t is measured in minutes. For $0<t<12$, the graph of r is concave down. The table above gives selected values of the rate of change, $r^{\prime}(t)$, of the radius of the balloon over the time interval $0 \leq t \leq 12$. The radius of the balloon is 30 feet when $t=5$. (Note: The volume of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$.)
(a) Estimate the radius of the balloon when $t=5.4$ using the tangent line approximation at $t=5$. Is your estimate greater than or less than the true value? Give a reason for your answer.
(b) Find the rate of change of the volume of the balloon with respect to time when $t=5$. Indicate units of measure.
(c) Use a right Riemann sum with the five subintervals indicated by the data in the table to approximate $\int_{0}^{12} r^{\prime}(t) d t$. Using correct units, explain the meaning of $\int_{0}^{12} r^{\prime}(t) d t$ in terms of the radius of the balloon.
(d) Is your approximation in part (c) greater than or less than $\int_{0}^{12} r^{\prime}(t) d t$? Give a reason for your answer.
(a) $r(5.4) \approx r(5)+r^{\prime}(5) \Delta t=30+2(0.4)=30.8 \mathrm{ft}$ Since the graph of r is concave down on the interval $5<t<5.4$, this estimate is greater than $r(5.4)$.
(b) $\frac{d V}{d t}=3\left(\frac{4}{3}\right) \pi r^{2} \frac{d r}{d t}$
$\left.\frac{d V}{d t}\right|_{t=5}=4 \pi(30)^{2} 2=7200 \pi \mathrm{ft}^{3} / \mathrm{min}$
(c) $\int_{0}^{12} r^{\prime}(t) d t \approx 2(4.0)+3(2.0)+2(1.2)+4(0.6)+1(0.5)$
$=19.3 \mathrm{ft}$
$\int_{0}^{12} r^{\prime}(t) d t$ is the change in the radius, in feet, from $t=0$ to $t=12$ minutes.
(d) Since r is concave down, r^{\prime} is decreasing on $0<t<12$. Therefore, this approximation, 19.3 ft , is less than $\int_{0}^{12} r^{\prime}(t) d t$.

Units of $\mathrm{ft}^{3} / \mathrm{min}$ in part (b) and ft in part (c)
$2:\left\{\begin{array}{l}1: \text { estimate } \\ 1: \text { conclusion with reason }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \frac{d V}{d t} \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { approximation } \\ 1: \text { explanation }\end{array}\right.$

1 : conclusion with reason

1 : units in (b) and (c)

Feedback from College Board

- Write short, concise explanations
- Be precise:
> "The graph of r " not "the graph"
> "the function r '(t)" not "the function"
> "the slope of $r^{\prime}(\mathrm{t})$ " not "the slope"
- When doing Riemann sums, know if the intervals are uniform width or not

Question 6

Let f be the function given by $f(x)=e^{-x^{2}}$.
(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=0$.
(b) Use your answer to part (a) to find $\lim _{x \rightarrow 0} \frac{1-x^{2}-f(x)}{x^{4}}$.
(c) Write the first four nonzero terms of the Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$ about $x=0$. Use the first two terms of your answer to estimate $\int_{0}^{1 / 2} e^{-t^{2}} d t$.
(d) Explain why the estimate found in part (c) differs from the actual value of $\int_{0}^{1 / 2} e^{-t^{2}} d t$ by less than $\frac{1}{200}$.
(a) $e^{-x^{2}}=1+\frac{\left(-x^{2}\right)}{1!}+\frac{\left(-x^{2}\right)^{2}}{2!}+\frac{\left(-x^{2}\right)^{3}}{3!}+\cdots+\frac{\left(-x^{2}\right)^{n}}{n!}+\cdots$

$$
=1-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{6}+\cdots+\frac{(-1)^{n} x^{2 n}}{n!}+\cdots
$$

(b) $\frac{1-x^{2}-f(x)}{x^{4}}=-\frac{1}{2}+\frac{x^{2}}{6}+\sum_{n=4}^{\infty} \frac{(-1)^{n+1} x^{2 n-4}}{n!}$ Thus, $\lim _{x \rightarrow 0}\left(\frac{1-x^{2}-f(x)}{x^{4}}\right)=-\frac{1}{2}$.
(c) $\int_{0}^{x} e^{-t^{2}} d t=\int_{0}^{x}\left(1-t^{2}+\frac{t^{4}}{2}-\frac{t^{6}}{6}+\cdots+\frac{(-1)^{n} t^{2 n}}{n!}+\cdots\right) d t$

$$
=x-\frac{x^{3}}{3}+\frac{x^{5}}{10}-\frac{x^{7}}{42}+\cdots
$$

Using the first two terms of this series, we estimate that $\int_{0}^{1 / 2} e^{-t^{2}} d t \approx \frac{1}{2}-\left(\frac{1}{3}\right)\left(\frac{1}{8}\right)=\frac{11}{24}$.
(d) $\left|\int_{0}^{1 / 2} e^{-t^{2}} d t-\frac{11}{24}\right|<\left(\frac{1}{2}\right)^{5} \cdot \frac{1}{10}=\frac{1}{320}<\frac{1}{200}$, since $\int_{0}^{1 / 2} e^{-t^{2}} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{1}{2}\right)^{2 n+1}}{n!(2 n+1)}$, which is an alternating series with individual terms that decrease in absolute value to 0 .
$3:\left\{\begin{array}{l}1: \text { two of } 1,-x^{2}, \frac{x^{4}}{2},-\frac{x^{6}}{6} \\ 1: \text { remaining terms } \\ 1: \text { general term }\end{array}\right.$

1 : answer
$3:\left\{\begin{array}{l}1: \text { two terms } \\ 1: \text { remaining terms } \\ 1: \text { estimate }\end{array}\right.$
$2:\left\{\begin{array}{c}1: \text { uses the third term as } \\ \text { the error bound } \\ 1: \text { explanation }\end{array}\right.$

Feedback from College Board

- Follow instructions. "First four terms and the general term" means the first four terms and the general term.
- If the question says "Use the answer from part (a)" then use your answer from part (a)
- Do not just state the names of theorems. You must explicitly show that the conditions of the theorem have been met.
- Remember the Maclaurin series for $\mathrm{e}^{\mathrm{x}}, \sin$ and cos. Finding $\mathrm{e}^{\times 2}$ is much easier when starting from the parent series.
- Use correct notation for an infinite series
- Be clear and concise. Use grammatically correct English, citing results of earlier work when appropriate

