PreCalculus - FINAL EXAM Review

- 1. Find the sum of $\sum_{k=1}^{17} (-9k + 7)$.
- [C] -146
- [D] -34
- 2. Find the kth partial sum of the arithmetic sequence $\{u_n\}$ with a common difference d. k = 18, $u_1 = -4$, d = 4
 - [A] 240
- [B] 576
- [C] 540
- [D] none of these
- Determine whether the sequence is arithmetic, geometric, or neither. -4, 20, -100, 500, -2500, ...
 - [A] arithmetic
- [B] geometric[C]
- neither
- Find the common ratio for geometric sequence $4\left(\frac{1}{2}\right)^{n-1}$.
 - [A] 8
- [B] $\frac{1}{2}$ [C] 4
- There are 11 students participating in a spelling bee. How many ways can the students who go first, second, third, fourth and fifth be chosen?
 - [A] 1,663,200 ways
- [B] 55,440 ways
- [C] 332,640 ways
- [D] 462 ways
- 6. Find all local maxima and minima of the function

$$f(x) = -x^3 - 3x^2 + 9x - 3.$$

- [A] x = -3 and x = 1 are local maxima.
- [B] x = 1 is a local minimum, x = -3 is a local maximum.
- [C] x = -3 is a local minimum, x = 1 is a local maximum.
- [D] x = -3 and x = 1 are local minima.
- Given $f(x) = x^3$ and $g(x) = -4 + 5x^2$, find $(g \circ f)(x)$ and its
 - [A] $-4+5x^2$, $x \neq \sqrt{\frac{4}{5}}$
- [B] $\frac{-4+5x^2}{x^3}$, $x \neq 0$
- [C] $-4+5x^6$, all real numbers
- [D] none of these
- 8. Find the inverse of the function.

$$f(x) = \frac{3x-7}{8}$$

- $[A] \quad g(x) = \frac{8x+7}{3}$
- [B] $g(x) = \frac{8x-7}{2}$
- $[C] \quad g(x) = \frac{8}{3x 7}$
- $[D] \quad g(x) = 3x 8$

9. Which shows the graph and lists the asymptotes of the rational function

$$f(x) = \frac{2x^2 - 5x - 3}{x^2 - 4}$$
?

[A]

$$x = -3$$
, $x = 3$, $y = 2$

[B]

$$x = -2$$
, $x = 2$, $y = 2$

[C]

$$x = -3$$
, $x = 2$, $y = 3$

$$x = -1$$
, $x = 3$, $y = 3$

Which graph is correct, including all X-intercepts, holes, and asymptotes

of the function y = -

[A]

[B]

[C]

[D]

- 11. Determine the domain of the function $f(x) = \frac{x^2 + 13x + 40}{x^2 + 4x + 12}$
 - [A] $(-\infty,5) \cup (5,8) \cup (8,\infty)$
- [B] $(-\infty, -6) \cup (-6,2) \cup (2,\infty)$
- [C] $(-\infty, -8) \cup (-8, -5) \cup (-5, \infty)$
- [D] $(-\infty, -2) \cup (-2, 6) \cup (6, \infty)$
- 12. Which of the following is not a polynomial?

 - [A] $x^2 2$ [B] $x^2 2 + 2x$ [C] -1 [D] $x^{-2} + 2$

13. Solve the equation and express each solution in a + bi form.

$$x^4 - 18x^2 - 243 = 0$$

[A]
$$x = -3i$$
, $3i$, $3\sqrt{3}$, or $-3\sqrt{3}$

[B]
$$x = -3i$$
, $3i$, $3\sqrt{3}i$, or $-3\sqrt{3}i$

[C]
$$x = -3$$
, 3, $3\sqrt{3}i$, or $-3\sqrt{3}i$

[D]
$$x = -3$$
, 3, $3\sqrt{3}$, or $-3\sqrt{3}$

14. Determine the domain of the function.

$$h(x) = \frac{7x}{x(x^2 - 25)}$$

[A]
$$(-\infty, -5) \cup (-5, 5) \cup (5, \infty)$$

[B]
$$(-\infty, -5) \cup (-5,0) \cup (0,5) \cup (5,\infty)$$

[C]
$$(-\infty,5) \cup (5,\infty)$$

[D]
$$(-\infty, -25) \cup (-25,0) \cup (0,25) \cup (25,\infty)$$

- 15. Perform the indicated operation and write the result in the form a + bi. -7i(3i+9)-3(3+2i)
 - [A] 30-57i
- [B] 72 15i
- [C] -12-57i
- [D] 12-69i
- 16. Find all the complex zeros of the polynomial function.

$$f(x) = x^4 + 8x^3 + 16x^2 - 8x - 17$$

- [A] 1, -1, -4-i, -4+i [B] 4, -4, 1-2i, 1+2i
- [C] 1, -1, -4-2i, -4+2i
- [D] 4, -4, 1-i, 1+i
- 17. Find the exact value of $\ln \sqrt[3]{e}$.
 - [A] 3e

- [B] 3 [C] $\frac{1}{2}$ [D] $\frac{1}{2}$
- 18. If \$3500 is invested at an interest rate of 7%, compounded continuously, determine the balance in the account after 6 years. Use the formula

$$A = Pe^{rt}$$
.

- [A] \$5326.87
- [B] \$5713.11
- [C] \$25,861.70
- [D] \$5252.56
- 19. Solve for X.

$$10^{x} = 30$$

- [A] x = 3
- [B] x = 1.48
- [C] x = 2.30
- [D] x = 1.10
- 20. Which is $2 \log x + 4 \log(x+4)$ written as a single logarithm?
 - [A] $\log x^2 (x+4)^4$
- [B] $\log x(x+4)^8$
- [C] $8 \log x(x+4)$
- [D] none of these
- 21. Which is the solution to $8^x = 7^{x+3}$?
 - [A] x = 1.4502
- [B] x = 21.8590
- [C] x = 43.7180
- [D] none of these

- The number of bacteria present in a culture after t minutes is given as $B = 1000e^{kt}$, where k is a constant. If there are 1673 bacteria present after 8 minutes, find k.
 - [A] 0.074
- [B] 0.064
- [C] 0.515
- [D] 4.117

- Find the value of sec 34°
 - [A] 0.6745
- [B] 0.829
- [C] 1.2062
- [D] 1.4826
- A tree casts a shadow of 27 meters when the angle of elevation of the sun is 28°. Find the height of the tree to the nearest meter.
 - [A] 13 m
- [C] 14 m
- [D] 24 m
- Which angle is not coterminal with 374°?
 - [A] 194°
- [B] 14°
- [D] -346°

- Convert 219° to radians.
 - [A] $\frac{73}{120}\pi$ [B] $\frac{73}{30}\pi$ [C] $\frac{73}{60}\pi$ [D] $\frac{73}{90}\pi$

- 27. Given that $m \angle A = 37^{\circ}$ and c = 10, find b in the right triangle below.

- [A] 7.99
- [B] 6.02
- [C] 12.52
- [D] 7.65
- What are the values of $\sin \theta$ and $\cos \theta$ for the acute angle θ in standard position if $\tan \theta = \frac{1}{3\sqrt{7}}$?

[A]
$$\sin \theta = 8$$
, $\cos \theta = \frac{3\sqrt{7}}{8}$

[B]
$$\sin \theta = \frac{3\sqrt{7}}{8}$$
, $\cos \theta = \frac{1}{8}$

[C]
$$\sin \theta = \frac{1}{8}, \cos \theta = \frac{3\sqrt{7}}{8}$$

[D]
$$\sin \theta = \frac{1}{8}, \cos \theta = \frac{8}{3\sqrt{7}}$$

- 29. On a Ferris wheel, you travel through a central angle of $\frac{128\pi}{9}$ before stopping. If the radius of the Ferris wheel is 76 feet, how many feet have you traveled?
 - [A] 3395.7 feet
- [B] 3385.7 feet
- [C] 15,290.7 feet
- [D] 15,280.7 feet

- Find $\cos \theta$ if (-8, -15) is a point on the terminal side of θ .

- [A] $\frac{15}{9}$ [B] $-\frac{15}{17}$ [C] $\frac{8}{15}$ [D] $-\frac{8}{17}$
- 31. Which single expression is equivalent to $\sin(\theta + 2\pi)$?
 - [A] $\sin \theta$
- [B] $-\cos\theta$
- [C] $-\sin\theta$
- [D] $\cos\theta$
- θ is an angle in standard position with point P(1, -8) on the terminal side. Which statement is not correct?
 - $[A] \cos \theta = \frac{-8\sqrt{65}}{65}$

- [C] $\cot \theta = -\frac{1}{g}$ [D] $\sin \theta = \frac{-8\sqrt{65}}{cc}$
- 33. A water wave is created in a wave tank. It has an amplitude of 5 and a period of $\frac{3\pi}{}$. Find the equation of this wave as a sine function.
 - [A] $f(t) = 5 \sin \frac{3\pi t}{5}$ [B] $f(t) = \frac{10}{2} \sin 5t$
 - [C] $f(t) = 5 \sin \frac{10t}{2}$
- [D] $f(t) = \frac{3\pi}{5} \sin \frac{t}{5}$
- 34. What is the amplitude and period of $f(t) = -6 \cos(7 t)$?
 - [A] amplitude: 6; period: $\frac{2}{-\pi}$ [B] amplitude: 12; period: $\frac{2}{-\pi}$

 - [C] amplitude: 6; period: $\frac{7}{\pi}$ [D] amplitude: -6; period: $\frac{7}{\pi}$
- What are the amplitude, period, and phase shift of the given function? $f(t) = \frac{1}{3}\sin(3t - 3\pi)$
 - [A] amplitude: 1 phase shift: -3π period: $\frac{2}{\pi}$
- [B] amplitude: $-\frac{1}{}$ phase shift: π period: 3
- [C] amplitude: $\frac{1}{-}$ phase shift: π period: 3π
- [D] amplitude: $\frac{1}{2}$ phase shift: π period: $\frac{2}{3}$ π
- 36. Which is $\sin(\tan^{-1} v)$ written as an algebraic expression in V?
 - [A] $\frac{1}{v+1}$ [B] $\frac{v}{\sqrt{v^2+1}}$ [C] $\sqrt{v^2+1}$ [D] \sqrt{v}

A weight attached to the end of a spring is pulled down 8 centimeters. It takes 10 seconds for it to complete one cycle of moving from its equilibrium position to 8 centimeters below, then rising to 8 centimeters above, and then finally returning to equilibrium. (This is assuming a spring with perfect elasticity and ignoring all other forces.) a. Find a sinusoidal function to represent the motion of the moving

b. Use the function from part (a) to predict the position of the weight after 15 seconds.

- [A] $h(t) = 8 \sin \frac{\pi}{t}, \approx 1 \text{ cm}$ [B] $h(t) = 10 \sin \frac{\pi}{t}, \approx -7.1 \text{ cm}$
- [C] $h(t) = 10 \sin \frac{\pi}{4} t$, $\approx 7.1 \text{ cm}$
- [D] $h(t) = 8 \sin \frac{\pi}{t}$, $\approx 0 \text{ cm}$
- What are all the exact t-values for which $\tan t = 0$?
- [A] $\frac{\pi}{-} + n\pi$ [B] $0 + n\pi$ [C] $\frac{\pi}{-} + n\pi$
- Find all solutions of $\tan^2 x = \frac{\sqrt{2}}{2} \sec x$ in $(0, 2\pi)$.
 - [A] $x = \frac{\pi}{4}, \frac{7\pi}{4}$
- [B] $x = \frac{2\pi}{2}, \frac{4\pi}{2}$
- $[C] \quad x = \frac{5\pi}{2}, \ \frac{7\pi}{2}$
- [D] none of these
- 40. Use factoring, the quadratic formula, or identities to solve $\cos x + 1 = \sin^2 x$. Find all solutions on the interval $[0, 2\pi)$.
 - [A] $x = \pi$, $x = \frac{\pi}{2}$, $x = \frac{3\pi}{2}$ [B] $x = \pi$, $x = \frac{\pi}{2}$, $x = \frac{2\pi}{3}$
 - [C] $x = \frac{\pi}{2}$, $x = \frac{5\pi}{6}$, $x = \frac{3\pi}{2}$
 - [D] $x = \frac{\pi}{2}, x = \frac{5\pi}{2}, x = \frac{2\pi}{2}$

Find all solutions of the equation on the interval $[0, 2\pi)$.

- 41. $2 \cot^2 x + 3 \csc x = 0$
 - [A] $0, \frac{\pi}{2}, \pi, \frac{5\pi}{2}$
- [B] $\frac{\pi}{-}, \frac{\pi}{-}, \frac{5\pi}{-}, \frac{3\pi}{-}$
- [C] $\frac{\pi}{-}$, $\frac{5\pi}{-}$, $\frac{7\pi}{-}$, $\frac{11\pi}{-}$
- 42. $2\csc^2\frac{x}{2} 3\csc\frac{x}{2} 2 = 0$

 - [A] $\frac{2\pi}{3}$ [B] $\frac{\pi}{3}$, $\frac{5\pi}{3}$ [C] $\frac{4\pi}{3}$

- 43. Solve $\cos 2x + 5\sin x = -2$ on the interval $[-\pi, \pi]$.
 - [A] $x = -\frac{\pi}{6}, -\frac{5\pi}{6}$
- [B] $x = -\frac{\pi}{6}, -\frac{5\pi}{6}, \frac{\pi}{7}, \frac{2\pi}{3}$
 - [C] $x = \frac{\pi}{2}, \frac{2\pi}{2}$
- [D] $x = \frac{\pi}{2}, \frac{5\pi}{2}$
- 44. What is the simplified form of $\sin \left(x \frac{3\pi}{2}\right)$?
 - [A] $-\sin x$
- [B] $\sin x$
- [C] $\cos x$
- [D] $-\cos x$
- 45. Find the exact value of $\cos \left(\frac{5\pi}{12} \right)$.
 - [A] $2 + \sqrt{3}$
- [B] $\sqrt{6} \sqrt{2}$
- [C] $\frac{\sqrt{6}-\sqrt{2}}{.}$
- [D] $\sqrt{6} + \sqrt{2}$
- Which expression is equal to the given expression? $\csc 2x \cot 2x$
- [C] $\tan \frac{x}{2}$ [D] $\cot \frac{x}{2}$
- Use the half-angle identity to find the exact value of $\cos \left(\frac{11\pi}{100} \right)$.
 - [A] $-\frac{\sqrt{2-\sqrt{2}}}{}$
- [B] $\sqrt{4+2\sqrt{2}} 2\sqrt{2+\sqrt{2}}$
- [C] $1+\sqrt{2}$
- [D] $-\sqrt{4-2\sqrt{2}}-2\sqrt{2-\sqrt{2}}$
- Given $\tan x = -\frac{2}{9}$ and $\frac{\pi}{2} < x < \pi$, find the exact value of $\tan 2x$.

- [A] $\frac{73}{81}$ [B] $\frac{4\sqrt{77}}{81}$ [C] $-\frac{36}{77}$ [D] $-\frac{4\sqrt{77}}{81}$
- Island A is 160 miles from Island B. A ship captain travels 280 miles from Island A and then finds that he is off course and 170 miles from Island B. What angle, in degrees, must he turn through to head straight

- [A] 149.11°
- [B] 120.89°
- [C] 59.11°
- [D] none of these
- Given a triangle with $\alpha = 3$, $A = 25^{\circ}$, and $B = 32^{\circ}$, what is C?
 - [A] 3.8
- [B] 0.3
- [C] 2.4
- [D] 6

51. Find the area of the triangle ABC under the given conditions.

$$A = 23^{\circ}$$
, $b = 2$ feet, and $c = 3$ feet

- [A] 2.8 ft^2 [B] 1.2 ft^2 [C] 2.3 ft^2
- [D] none of these
- 52. Plot $-3\sqrt{3}-3i$ in the complex plane.

[A]

[B]

[C]

[D]

53. Find the absolute value of the complex number.

$$-8 + 2i$$

- [A] 60
- [B] 8.25
- [C] 7.75
- [D] 68

54. Which is the graph of the polar coordinate $\left(-6, \frac{2\pi}{3}\right)$?

[A]

[B]

[C]

55. Express the number in polar form. 2-2i

[A]
$$2\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$

[B]
$$2\sqrt{2}\left(\cos\frac{7\pi}{4}-i\sin\frac{7\pi}{4}\right)$$

[C]
$$2\sqrt{2}\left(\cos\frac{9\pi}{4} + i\sin\frac{9\pi}{4}\right)$$

[D] none of these

- 56. Evaluate: $(-2 + 2i)^5$
 - [A] 128-128i
- [B] 128 + 128i
- [C] -128 + 128i
- [D] none of these
- 57. Find the rectangular coordinates of $\left(3, \frac{5\pi}{3}\right)$.
 - [A] $\left[-\frac{3\sqrt{3}}{2}, \frac{3}{2}\right]$
- $[B] \left[\frac{3\sqrt{5}}{2}, -\frac{3}{2} \right]$
- [C] $\left[\frac{3}{2}, -\frac{3\sqrt{3}}{2}\right]$
- [D] $\left[-\frac{3}{2}, \frac{3\sqrt{5}}{2}\right]$
- 58. Find the equation of the hyperbola centered at the origin that satisfies the given conditions: x-intercepts ± 4 , asymptote $y = \frac{5}{4}x$.
 - [A] $25x^2 25y^2 = 400$
- [B] $16x^2 25y^2 = 400$
- [C] $25x^2 16y^2 = 400$
- [D] $25x^2 + 16y^2 = 400$
- 59. Find the equation of the parabola with vertex at the origin that satisfies the given condition: directrix x = 5
 - [A] $x = -20y^2$
- [B] $x = \frac{1}{20}y^2$
- [C] $x = 5y^2$
- [D] $x = -\frac{1}{20}y^2$
- 60. Find the center, vertices, and foci for the ellipse $4x^2 + 16y^2 = 64$.
 - [A] center (0, 0)
- [B] center (2, 4)
- vertices (±4, 0)
- vertices (4, 0) and (4, 8)
- foci (±3.5, 0)
- foci (4, -1.5) and (4, 5.5)
- [C] center (0, 0)
- [D] center (4, 2)
- vertices $(0, \pm 4)$
- vertices (0, 2) and (4, 2)
- foci $(0, \pm 3.5)$
- foci (0.52) and (7.52)

- 61. Which graph matches the equation $x^2 + 16y^2 = 16$?
 - [A]

[B]

[C]

62. Which is the graph of the equation $25x^2 - 16y^2 = 400$?

[A]

[B]

[C]

[D]

63. Sketch the graph of the polar equation $r = \frac{7}{4 + 3\cos\theta}$

[A]

[B]

[C]

64. Use the graph of the function f to determine the given limit. $\lim f(x)$

- [A] -7
- [B] 2
- [D] does not exist
- Use a calculator to find $\lim_{x\to 0} \frac{2\sec(4x)-2}{4x\sec(4x)}$.
- [B] 4
- [C] 2
- [D] none of these

Find the limit, if it exists.

- $66. \quad \lim_{x \to 0} \frac{\sqrt{x+6} \sqrt{6}}{2}$
- [A] 6 [B] $\sqrt{6}$ [C] $\frac{1}{2\sqrt{6}}$
- [D] none of these

- 67. $\lim_{x \to 2} (3x^3 + x^2 + 22)$
 - [A] 54
- [B] 36
- [C] 46
- [D] none of these
- 68. Find $\lim_{h\to 0} \frac{f(3+h)-f(3)}{h}$ if $f(x)=x^3$.
- [B] 140
- [C] 0
- [D] 152
- At which of the given values is the graph discontinuous?

- [A] 6
- [B] 0
- [C] 2
- [D] -5

Determine all numbers at which the function is continuous.

$$f(x) = \begin{cases} \frac{x^2 + 3x - 10}{x^2 + 2x - 8} & \text{if } x \neq 2\\ \frac{7}{6} & \text{if } x = 2 \end{cases}$$

- [A] Continuous at every real number except x = -4.
- [B] Continuous at every real number except x = 2 and x = -5.
- [C] Continuous at every real number except x = 2.
- [D] Continuous at every real number except x = -4 and x = 2.
- Find the values of X (if any) at which $f(x) = \frac{x+6}{x^2-36}$ is not continuous.

If so, is the discontinuity removable?

- [A] removable at -6, non-removable at 6
- [B] non-removable at -6, removable at 6
- [C] non-removable at -6 and 6 [D] none of these
- 72. If $z = 8 \left(\cos \frac{5\pi}{9} + i \sin \frac{5\pi}{9} \right)$ and $w = 2 \left(\cos \frac{\pi}{9} + i \sin \frac{\pi}{9} \right)$ find:

[A] a.
$$zw = 16\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$
, b. $\frac{z}{w} = 4\left(\cos\frac{4\pi}{9} + i\sin\frac{4\pi}{9}\right)$

[B] a.
$$zw = 16 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$$
, b. $\frac{z}{w} = 4 \left(\cos \frac{\pi}{36} + i \sin \frac{\pi}{36} \right)$

[C] a.
$$zw = 16 \left(\cos \frac{100\pi}{9} + i \sin \frac{100\pi}{9} \right)$$
, b. $\frac{z}{w} = 4 \left(\cos \frac{\pi}{36} + i \sin \frac{\pi}{36} \right)$

[D] none of these