

Contents

Success in Calculus requires thorough understanding of key definitions and theorems. It is
Success in Calculus requires thorough understanding of key definitions and theorems. It is
l
l
a lawyer applying a law.
a lawyer applying a law.

In addition to popping up on regular quizzes and tests, you will also be given specific
In addition to popping up on regular quizzes and tests, you will also be given specific
definition/theorem assessments to determine how well you have learned them. Following are
definition/theorem assessments to determine how well you have learned them. Following are
inclusive, but it does cover the most important definitions and theorems.
inclusive, but it does cover the most important definitions and theorems.
You are expected to memorize the wording of each definition and theorem, understand the
You are expected to memorize the wording of each definition and theorem, understand the
significance of the wording chosen, determine when a definition or theorem can and cannot be
significance of the wording chosen, determine when a definition or theorem can and cannot be

Definition: Vertical Asymptote

The line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if either
$\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad$ or $\quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty$

Definition: Horizontal Asymptote

If $\quad \lim _{x \rightarrow \infty} f(x)=b$ or $\quad \lim _{x \rightarrow-\infty} f(x)=b$

Then $y=b$ is a horizontal asymptote of $f(x)$

Definition of Continuity

- Continuity at an interior point -

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

- Continuity at an endpoint -

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \text { or } \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

Unit 3 - Derivatives

Definition (alternate) Derivative at a Point

The derivative of the function f with respect to the variable x
The derivative of the function f at the point $x=a$ is the limit is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Provided the limit exists.

$$
f^{\prime}(a)=\lim _{\substack{\rightarrow a}} \frac{f(x)-f(a)}{x \rightarrow a}
$$

Provided the limit exists.

Theorem -

Differentiability Implies Continuity
If f is differentiable at a,
then it is continuous at a.
Unit 4 - Applications of Derivatives

Theorem

 Increasing/Decreasing FunctionsLet f be continuous on $[a, b]$ and differentiable on (a, b).

1. If $f^{\prime}>0$ at each point of (a, b), then f increases on $[a, b]$. 2. If $f^{\prime}<0$ at each point of (a, b), then f decreases on $[a, b]$.

Definition -

Absolute Extreme Values
Let f be a function with domain D . Then $\mathrm{f}(\mathrm{c})$ is the
(a) absolute maximum value on D if and only if
$f(x) \leq f(c)$
(b) absolute minimum value on D if and only if
$f(x) \geq f(c)$

Definition -

Local Extreme Values
Let c be an interior point of the domain of the function f. Then $f(c)$ is a
(a) local maximum value at c if and only if
for all x in some open interval containing c.
(b) local minimum value at c if and only if
for all x in some open interval containing c.
(These definitions consider the entire domain of the function. Considering only a specific interval will be discussed later.)

Theorem - Local Extreme Values

If a function f has a local maximum or a local minimum value at an interior point c of its domain, and if f^{\prime} exists at c, then

Definition
 Critical Point

A point in the interior of the domain of a function f at which $f^{\prime}=0$ or does not exist is a critical point of f.

Definition - Concavity

The graph of a differentiable function $y=f(x)$ is
(a) concave up on an open interval I if y^{\prime} is increasing on I.
(b) concave down on an open interval I if y^{\prime} is decreasing on I.

Definition - Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

Intermediate Value Theorem

If a function is continuous on $[a, b]$ then the function takes on all values between $f(a)$ and $f(b)$.

Mean Value Theorem for Derivatives

If f is continuous on [a,b] and differentiable on (a,b)
Then there exists a number, c, in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Rolle's Theorem

Let f be continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b).

If $f(a)=f(b)$
Then there is at least one value c in (a, b) such that $f^{\prime}(c)=0$

This is a special instance of the Mean Value Theorem

Theorem - Differing Constant

Functions with the same derivative differ by a constant

If $f^{\prime}(x)=g^{\prime}(x)$ at each point of an interval I, then there is a constant C such that $f(x)=g(x)+C$ for all x in I.

Definition - Antiderivative

A function $F(x)$ is an antiderivative of a function $f(x)$ if $F^{\prime}(x)=f(x)$ for all x in the domain of f.

The process of finding an antiderivative is antidifferentiation.

Unit 5 - Definite Integrals

The Definite Integral of a Continuous Function on [a,b]

```
Let f}\mathrm{ be continous on [a,b], and let [a.b] be partitioned into
n}\mathrm{ subintervals of equal length }\Deltax=(b-a)/n\mathrm{ . Then the definite
integral of f}\mathrm{ over [a,b] is given by
    lim}\mp@subsup{|}{n->\infty}{n}\mp@subsup{\sum}{k=1}{n}f(\mp@subsup{c}{k}{})\Delta
where each }\mp@subsup{c}{k}{}\mathrm{ is chosen arbitrarily in the }\mp@subsup{k}{}{\mathrm{ th}}\mathrm{ subinterval.
```

Definition- The Definite Integral as a Limit of Riemann Sums

Let f be a function on a closed interval [a,b]. For any partition P of $[a, b]$, let the numbers c_{k} be chosen arbitrarily in the subintervals $\left[x_{k-1}, x_{k}\right.$]. If there exists a number /such that

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}=I
$$

no matter how P and c_{k} 's are chosen,
Then f is integrable on $[\mathrm{a}, \mathrm{b}]$ and $/$ is the definite integral of f over [a,b].

Theorem - The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f is continous on an interval $[a, b]$, then its definite integral over $[a, b]$ exists.

Definition - Area Under a Curve (as a Definite Integral)

If $y=f(x)$ is nonnegative and integrable over a closed interval $[a, b]$, then the area under the curve $y=f(x)$ from a to b is the integral of f froma to b.
$A=\int_{0}^{b} f(x) d x$

The Fundamental Theorem of

 Calculus, Part 1If f is continuous on $[\mathrm{a}, \mathrm{b}]$, then the function $\quad F(x)=\int_{a}^{x} f(t) d t$
(where a is a constant) has a derivative at every point and

$$
\frac{d}{d x} F(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Combining with the chain rule: $\frac{d}{d x} \int_{a}^{u} f(t) d t=f(u) \frac{d u}{d x}$

Definition - Average Value

If f is integrable on $[a, b]$, its averable (mean) value on $[a, b]$ is

Average Value $=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Mean Value Theorem for Definite

 IntegralsIf f is continuous on $[a, b]$, then at some point c in $[a, b]$,

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

True or False

The Mean Value Theorem says:
If f is continuous on [a,b]
Then there exists a number, c, in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Fill in the blank

The Mean Value Theorem says:
If f is \qquad on $[a, b]$ and \qquad on (a,b)

Then there exists a number, c, in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Pick the correct term

The Mean Value Theorem says:
If f is (continuous/differentiable) on [a,b] and (continuous/ differentiable) on (a,b)

Then there exists a number, c, in (a,b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Recite the definition or theorem

The Mean Value Theorem says:

Fix the mistake

The Mean Value Theorem says:
If f is differentiable on $[\mathrm{a}, \mathrm{b}]$ and continuous on (a,b)
Then there exists a number, c, in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Recite the definition or theorem
The Mean value Theorem says:

Use the definition or theorem

[^0]
Can the definition/theorem be used?

Given $f(x)=\frac{1}{x}$, can the Extreme Value Theorem be used to find an absolute maximum and/or minimum on the interval $[0,2]$. Explain why or why not.

[^0]: Given $f(x)=x^{2}$, find the value, c, guarenteed
 to exist by the Mean Value Theorem on the interval [0,2]

