BC Calculus

Unit 5 Day 8

Absolute and Conditional
Convergence

Ratio and Root Tests

The Alternating Series Test

() b >b, for al n
(c) limb =0

If part (b) is satisfied
then part (c) tells conclusively if series converges or diverges.

If part (b) is not satisfied then test is inconclusive.

Example
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The terms are approaching zero but each next term is not
necessarily less than the one before it.

The test is INCONCLUSIVE. Some other method of
determining convergence is needed.
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Alternating Series

If an alternating series is convergent you
could then be asked to specify if it is

“Absolutely Convergent”

Or “Conditionally Convergent-




BC Calculus

Absolute Convergence,
Ratio Test, & Root Test

Def. Absolutely Convergent

Aseries |- 2n [is ABSOLUTELY CONVERGENT
if the SERIES Z‘an‘ is convergent.

If a series is absolutely convergent
then it is convergent

Note: We can use ANY test we know to
determine absolute convergence!
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The original series is Absolutely Convergent

The alternating harmonic series,
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s convergent by the alternating series test.

But is it absolutely convergent?
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This is the harmonic series and is therefore
divergent, which means the alternating

harmonic series is NOT absolutely convergent

Conditional Convergence

It is possible for a series to be Convergent,

but NOT Absolutely Convergent.

This is called CONDITONAL
CONVERGENCE:

When the alternating series converges, but the

absolute value does not

The possibilities
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We’'re almost done.
Just 2 more tests to go.

Is the following series absolutely convergent?
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Weneed a test that will work.
Nothing yet in our collection.




The Ratio Test

We are going to compare the ratio
between consecutive terms...

Examples:

Test the series for absolute convergence
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(@) If lim By =L <1, thenthe series > a,, nL

A = Using the Ratio Test:
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Examples: And finally, The ROOT Test

Test the series for absolute convergence
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Using the Ratio Test:
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Thus, by the Ratio Test, the given series is absolutely
convergentand therefore convergent.
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Examples:
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Converges!
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Converges!
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Absolute and Conditional Convergence
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