

then part (c) tells conclusively if series converges or diverges.

If part (b) is not satisfied then test is inconclusive.

The possibilities
If $\sum a_n = CV$ then $\sum a_n$ also CV and is said to be "absolutely CV " $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ vs $\sum_{n=1}^{\infty} \frac{1}{n^2}$
If $\sum a_n = DV$ but $\sum a_n = CV$ then $\sum a_n$ is "conditionally CV " $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \qquad v_S \qquad \sum_{n=1}^{\infty} \frac{1}{n}$
If $\sum a_n = DV$ then $\sum a_n $ also DV $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 3n}{4n}$ vs $\sum_{n=1}^{\infty} \frac{3n}{4n}$
It is not possible for $\sum a_n = DV$ and $\sum a_n = CV$

And finally, The RC	DOT Test
Useful for series like	$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$
$\lim_{n \to \infty} \sqrt[n]{ a_n } < 1$	Converges
$\lim_{n \to \infty} \sqrt[n]{ a_n } > 1$	Diverges
$\lim_{n\to\infty}\sqrt[n]{ a_n } = 1$	Inconclusive

Packet p.10 (even and odd) Absolute and Conditional Convergence					
2. Abs. CV	3.	Abs. CV	4.	DV	
5. Conditional CV					
Absolute CV	7.	DV	8.	Conditional CV	
Absolute CV	10.	DV	11.	Absolute CV	
12. Absolute CV	13.	Absolute CV			
 Absolute CV 	15.	Absolute CV			
16. DV	17.	Conditional CV			
18.	19.	Absolute CV	20	 Absolute CV 	
21.DV	22.	Conditional CV			
23. Absolute CV	24.	Absolute CV			
25. Absolute CV	26.	DV	2	7. DV	
28. Absolute CV					