

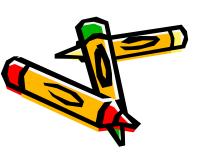
Calculus BC

Unit 1 Day 7

A COL

Last Night's HW

Find a partner and pick one homework problem to "teach" together on the board. Everyone gets a turn!!



NEW Topic Derivatives of Polar Equations

Let's take a stroll down AB memory land...

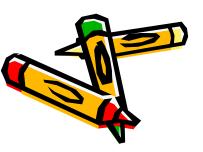
Find the derivative: 1) $y = 4x^2 - 3x + 1$ 2) $y = \cos x$ 3) $y = (x^3 - 2x^3)$ $4) y = \frac{x}{x+1}$

Answers: 1) y' = 8x - 32) $y' = -\sin x$ 3) $y'=12(x^3-2x^3)(x^2-2)$ 4) $y' = \frac{1}{(x+1)^2}$

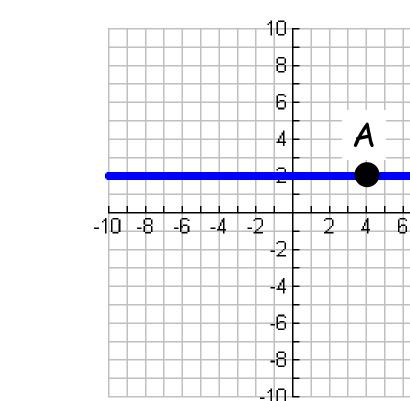
A derivative is . . .

The slope of a tangent line to the curve.

The change of the dependent variable over the change of the independent variable.



What is the slope at point A?



8

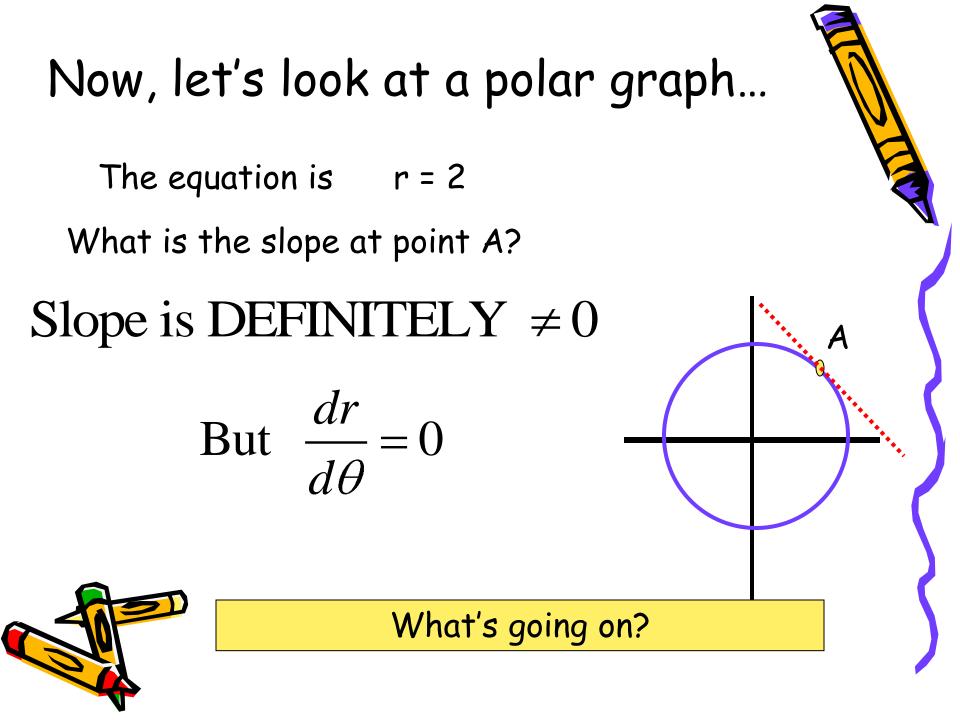
10



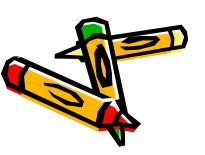
y = 2

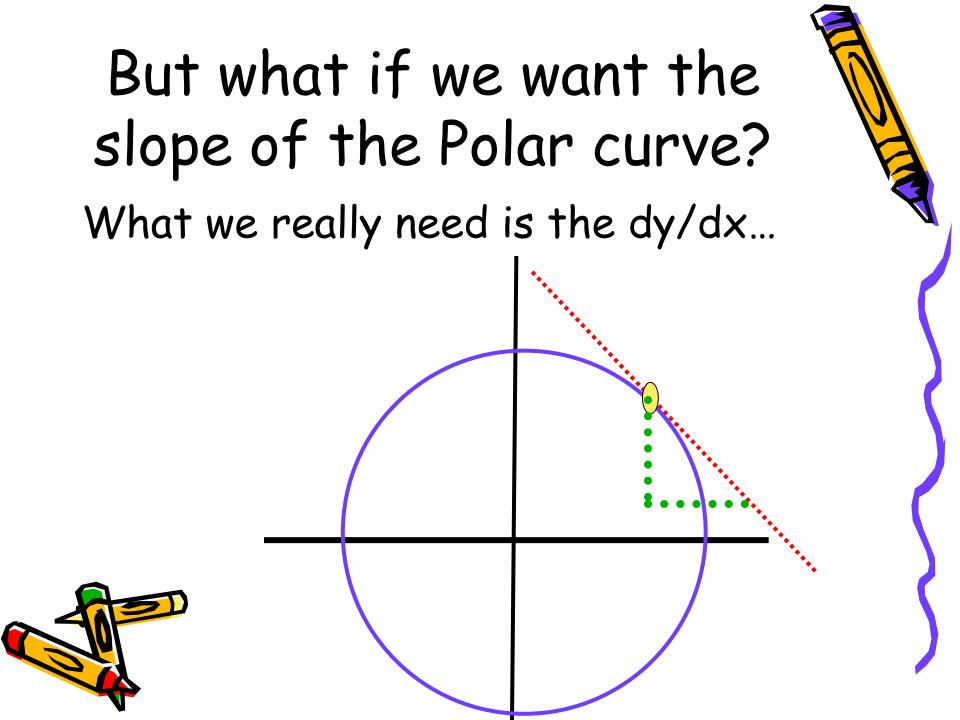
 $\frac{dy}{dx} = 0$

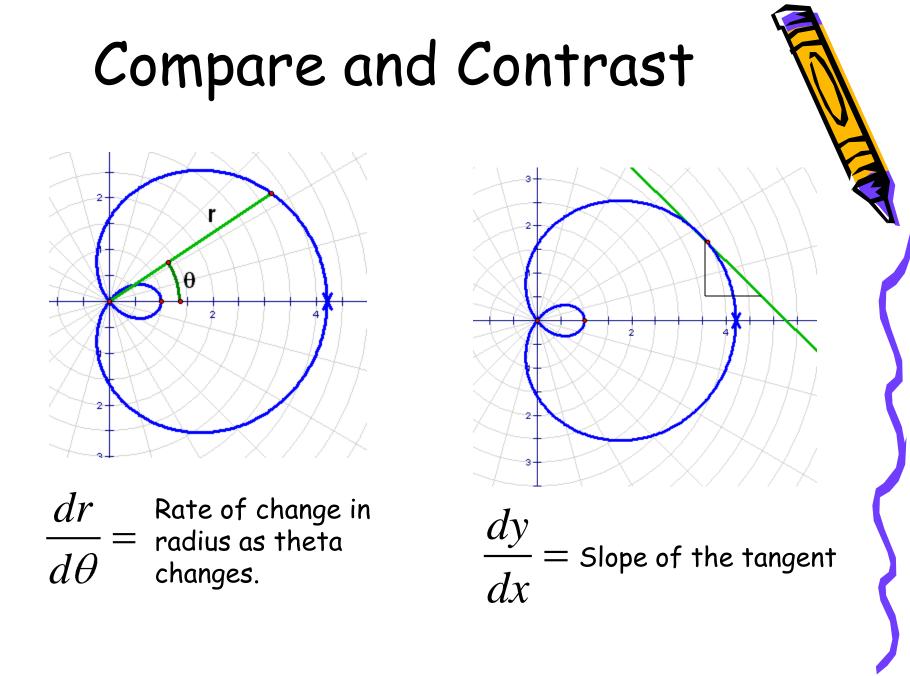
Slope = 0



dr This means $\overline{d\theta}$ does not find the slope of the curve! dr So what is $\frac{1}{d\theta}$ The change in r with respect to theta. And in our circle, r did not change, which explains the O.



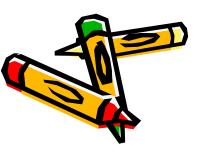


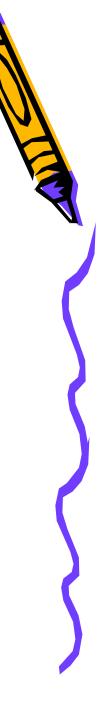


But, we only have r's and theta's. What do we do? Use conversion equations and write: $x = r \cos \theta = f(\theta) \cos \theta$ $y = r \sin \theta = f(\theta) \sin \theta$ r is a function of θ

 $x = r \cos \theta = f(\theta) \cos \theta$ $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} =$$



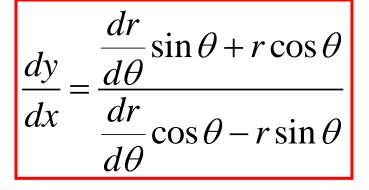


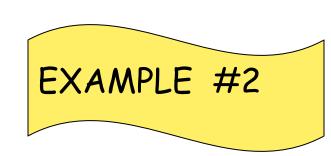
Let's go back to the original example...r = 2

It's clear that $\frac{dr}{d\theta} = 0$

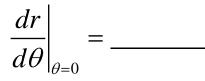
Now, let's find the slope of the polar curve. REMEMBER this is dy/dx:

$$\frac{\frac{dr}{d\theta}}{\frac{dr}{d\theta}}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$





Find the slope of $r = 3(1 - \cos \theta)$ at $\theta = \frac{\pi}{2}$



$$r(0) =$$

 $\cos(0) =$ _____

Now . . .

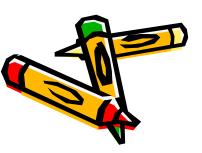
Write the equation of the tangent line to $r = 3(1 - \cos \theta)$ at $\theta = \frac{\pi}{2}$

We need the slope at this location. Got it!

dy

dx

And we need to know the coordinates of the point of tangency . . .



Point of Tangency . . .

$$r = 3(1 - \cos \theta)$$
 at $\theta = \frac{\pi}{2}$

REMEMBER the slope of the curve is dy/dx.

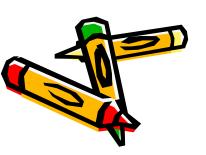
Which means the we need the Cartesian coordinates for our point of tangency.

BUT first we will find the polar coordinates

Polar: $\left(r\left(\frac{\pi}{2}\right), \frac{\pi}{2}\right) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

NOW, convert $\left(3, \frac{\pi}{2}\right)$ to Cartesian

Remember,
$$x = r \cos \theta$$
 and $y = r \sin \theta$



Now you can write the <u>equation</u> of the tangent line

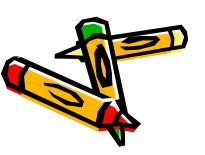
Slope of $\frac{dy}{dx} = -1$ Point of Tangency: (0,3) Tangent line: $\frac{dy}{dx}$

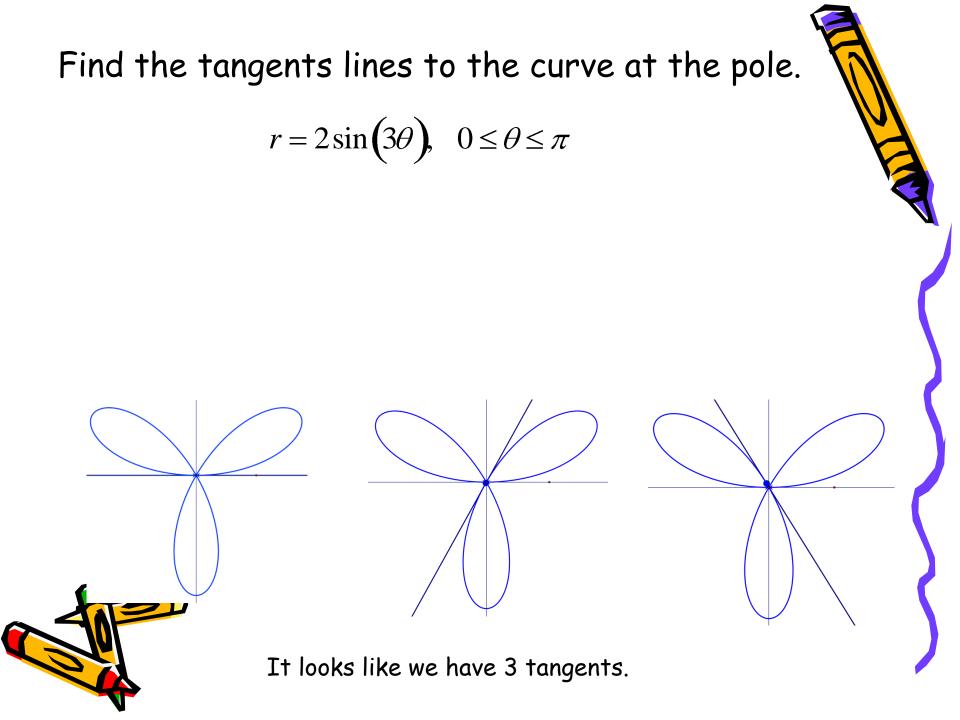
Next Example Problem

Find the <u>lines</u> tangent to the following rose curve at the pole:

 $r = f(\theta) = 2\sin 3\theta$

Remember the domain is $0 \le \theta \le \pi$ because it is an "odd" rose curve.





First:

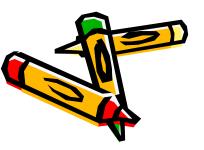
Since we are interested in tangent lines at the pole, we need to know the theta values that will make r = 0.

$$0 = 2\sin 3\theta$$
BE CAREFUL. \bigcirc

Since we are interested in tangent lines at the pole, the Cartesian coordinates for the <u>point of</u> <u>tangency</u> will always be (0,0).

<u>Third:</u>

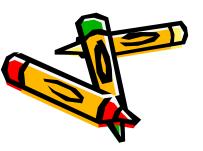
Now for the slope at the pole . . .



Slopes of tangent lines at the pole . . .

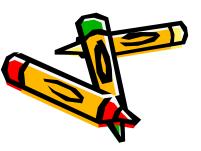
Since r=0 at the pole

$$\frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} =$$



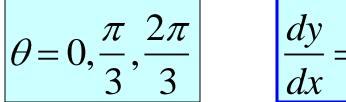
Now, find the value of the slope (dy/dx) at the theta values from our previous step. And write the equation of the tangent line.

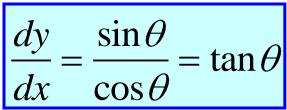
θ – value	$\tan \theta$	Equation of Tangent Line
0		
$\frac{\pi}{3}$		
$2\pi/3$		
π		

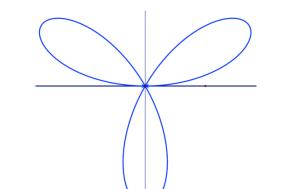


Find the tangent lines to the curve at the pole.

$$r = 2\sin(3\theta), \quad 0 \le \theta \le \pi$$



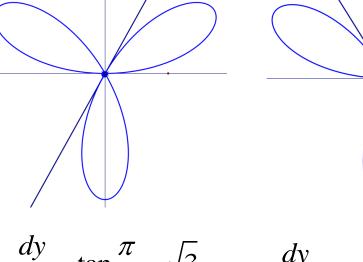




dy

dx

 $= \tan 0 = 0$



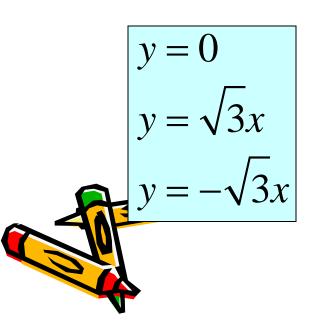
 $\frac{dy}{dx} = \tan\frac{\pi}{3} = \sqrt{3} \qquad \qquad \frac{dy}{dx} = \tan\frac{2\pi}{3} = -\sqrt{3}$

Find the tangents lines to the curve at the pole.

$$r = 2\sin(3\theta), \quad 0 \le \theta \le \pi$$

$$\frac{dy}{dx} = \tan 0 = 0 \qquad \qquad \frac{dy}{dx} = \tan \frac{\pi}{3} = \sqrt{3}$$

Straight lines through the pole are easy.



They are even easier in polar.

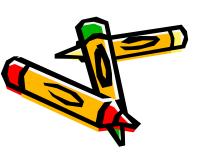
$$\theta = 0$$
$$\theta = \frac{\pi}{3}$$
$$\theta = \frac{2\pi}{3}$$

 $\frac{dy}{dx} = \tan\frac{2\pi}{3} = -\sqrt{3}$

Summary

To find tangents at the pole:

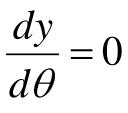
- For polar equations, just find θ 's
- For rectangular equations, dy/dx = tan(θ), points = (0,0)



New type of problem . . .

 $\frac{dr}{d\theta}\sin\theta + r\cos\theta$ dydx $\frac{\overline{dx}}{d\theta} - \frac{\overline{dr}}{d\theta}\cos\theta - r\sin\theta$

To find horizontal tangents, the numerator of the slope expression must equal zero.



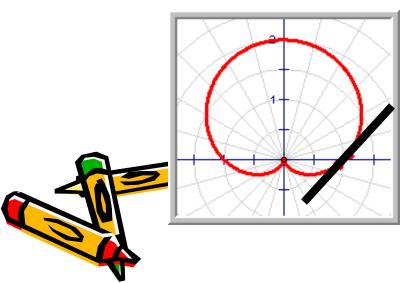
To find vertical tangents, the denominator of the slope expression must equal zero.

dx

Example Problem . . .

For the curve, $r = 1 + \sin \theta$

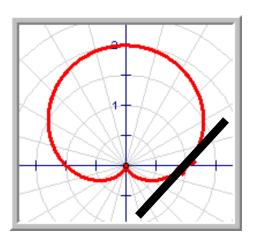
- A) Find the EQUATION for the <u>slopes</u> of the tangent lines
- B) Find where there are horizontal tangents
- C) Find the slope when $\theta = 0$



Example Problem . . .

For the curve, $r = 1 + \sin \theta$

A) Find the EQUATION for the <u>slopes</u> of the tangent lines



$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

A)
$$\frac{dy}{dx} = \frac{\cos\theta + 2\sin\theta\cos\theta}{-\sin\theta - \sin^2\theta + \cos^2\theta}$$

B) Find where there are horizontal tangents $dy \qquad \cos\theta + 2\sin\theta\cos\theta$ $\frac{dx}{dx} = \frac{-\sin\theta - \sin^2\theta + \cos^2\theta}{-\sin^2\theta + \cos^2\theta}$ $\frac{dy}{d\theta} = 0 \quad \Rightarrow \cos\theta + 2\cos\theta\sin\theta = 0 \quad \Rightarrow$ $\cos\theta 1 + 2\sin\theta = 0$ $\cos\theta = 0 \qquad 1 + 2\sin\theta = 0$ $\theta = \frac{\pi}{2}, \frac{3\pi}{5} \qquad \theta = \frac{11\pi}{6}, \frac{7\pi}{6}$ We discard $\frac{3\pi}{2}$ because it makes the

derivative undefined

One More Thing ...

Now that we know there is a horizontal tangent at $\frac{11\pi}{6}$ let's write the equation of

the tangent line at this location.

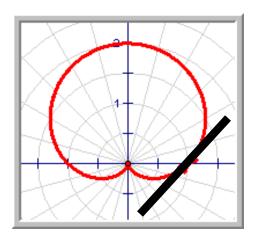
Remember to write the equation of a line, we need a point and the slope.

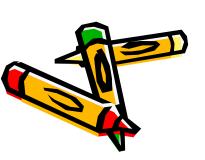
We know the slope is zero! Which makes this task easy to deal with once we know the point of tangency.

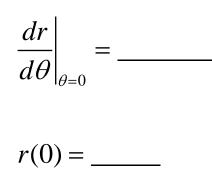
Example Problem . . .

For the curve, $r=1+\sin\theta$ C) Find the slope when $\theta=0$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$







sin(0) =_____

 $\cos(0) =$ _____

Using Calculator to analyze graphs

FORMAT Parameters PolarGC

WINDOW Parameters ØMin, ØMax ØStep

Finding Polar intersections

DRAW Menu Horizontal and Vertical Tangent

DRAW

Set
$$r = 1 + 2\sin\theta$$

Set $\theta Min = 0$ $\theta Max = 2\pi$

 $\theta Step = \pi / 24$

DRAW Horizontal and Vertical can help visualize and locate tangents.

Option 1:ClrDraw to clear lines

Bring up DRAW menu (2nd PRGM)

Select 3:Horizontal

Use up/down arrows

Press ENTER to fix line

Draw

DRAW Tangent can show tangent at any point and its dy/dx value.

Select 5: Tangent

Use right/left arrows to move around graph to any point

Press ENTER to draw tangent line

