

Calculus BC

Unit 1 Day 7

Last Night's HW

Find a partner and pick one homework problem to "teach" together on the board. Everyone gets a turn!!

Calculus BC

NEW Topic
Derivatives of Polar Equations

Let's take a stroll down AB memory land...

Find the derivative:

1) $y=4 x^{2}-3 x+1$

Answers:
2) $y=\cos x$

1) $y^{\prime}=8 x-3$
2) $y=\left(x^{3}-2 x^{7}\right.$
3) $y^{\prime}=-\sin x$
4) $y^{\prime}=12{ }^{3}-2 x^{\pi},\left(x^{2}-2\right.$,
5) $y^{\prime}=\frac{1}{4+1^{2}}$

A derivative is . . .

The slope of a tangent line to the curve.
The change of the dependent variable over the change of the independent variable.

What is the slope at point A ?

$$
\begin{aligned}
& y=2 \\
& \frac{d y}{d x}=0 \\
& \text { Slope }=0
\end{aligned}
$$

Now, let's look at a polar graph...
The equation is $r=2$
What is the slope at point A ?

Slope is DEFINITELY $\neq 0$

But $\frac{d r}{d \theta}=0$

What's going on?

This means $\frac{d r}{d \theta}$ does not find the slope of the curve!
So what is $\frac{d r}{d \theta}$
The change in r with respect to theta.
And in our circle, r did not change, which explains the 0 .

But what if we want the slope of the Polar curve?

What we really need is the $\mathrm{dy} / \mathrm{dx}$...

Compare and Contrast

$d r \quad$ Rate of change in $\overline{d \theta}=\begin{aligned} & \text { radius as theta } \\ & \text { changes. }\end{aligned}$

$\frac{d y}{d x}=$ slope of the tangent

But, we only have r's and theta's. What do we do?

Use conversion equations and write:

$$
\begin{aligned}
x=r \cos \theta & =f(\theta) \cos \theta \\
y=r \sin \theta & =f(\theta) \sin \theta \\
r & \text { is a function of } \theta
\end{aligned}
$$

$$
\begin{aligned}
& x=r \cos \theta=f(\theta) \cos \theta \\
& y=r \sin \theta=f(\theta) \sin \theta
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=
$$

Let's go back to the original example...r = 2

It's clear that $\frac{d r}{d \theta}=0$
Now, let's find the slope of the polar curve. REMEMBER this is $d y / d x$:
$\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}$

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

EXAMPLE \#2

Find the slope of $r=3(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$

$$
\begin{aligned}
& \left.\frac{d r}{d \theta}\right|_{\theta=0}= \\
& r(0)= \\
& \sin (0)=
\end{aligned}
$$

$\cos (0)=$

Now . . .

Write the equation of the tangent line to

$$
r=3(1-\cos \theta) \quad \text { at } \quad \theta=\frac{\pi}{2}
$$

We need the slope at this location. Got it!

$$
\frac{d y}{d x}=
$$

And we need to know the coordinates of the point of tangency

Point of Tangency
 $$
r=3(1-\cos \theta) \text { at } \theta=\frac{\pi}{2}
$$

REMEMBER the slope of the curve is $d y / d x$.

Which means the we need the Cartesian coordinates for our point of tangency.

BUT first we will find the polar coordinates

Polar:

$$
\left(r\left(\frac{\pi}{2}\right), \frac{\pi}{2}\right)=\left(\square, \frac{\pi}{2}\right)
$$

NOW, convert $\left(3, \frac{\pi}{2}\right)$ to Cartesian

Remember, $x=r \cos \theta$ and $y=r \sin \theta$

Now you can write the equation of the tangent line

Slope of
Tangent line: $\quad \frac{y}{d x}=-1$
Point of Tangency: $(0,3)$

Next Example Problem

following rose curve at the pole:
$r=f(\theta)=2 \sin 3 \theta$

Remember the domain is
$0 \leq \theta \leq \pi$ because it is an "odd" rose curve.

Find the tangents lines to the curve at the pole.

$$
r=2 \sin (3 \theta), \quad 0 \leq \theta \leq \pi
$$

It looks like we have 3 tangents.

First:

Since we are interested in tangent lines at the pole, we need to know the theta values that will make $r=0$.

$$
0=2 \sin 3 \theta
$$

BE CAREFUL. ©

Second:

Since we are interested in tangent lines at the pole, the Cartesian coordinates for the point of tangency will always be $(0,0)$.

Third:
Now for the slope at the pole . . .

Slopes of tangent lines at the pole...

Since $r=0$ at the pole

$$
\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}=
$$

Now, find the value of the slope (dy/dx) at the theta values from our previous step. And write the equation of the tangent line.

θ-value $\tan \theta$
 Equation of Tangent Line

$$
\begin{gathered}
0 \\
\pi / 3 \\
2 \pi / 3 \\
\pi
\end{gathered}
$$

Find the tangent lines to the curve at the pole.

$$
r=2 \sin (3 \theta), \quad 0 \leq \theta \leq \pi
$$

$$
\theta=0, \frac{\pi}{3}, \frac{2 \pi}{3} \quad \frac{d y}{d x}=\frac{\sin \theta}{\cos \theta}=\tan \theta
$$

分 $\frac{d y}{d x}=\tan 0=0$

$\frac{d y}{d x}=\tan \frac{\pi}{3}=\sqrt{3}$

$$
\frac{d y}{d x}=\tan \frac{2 \pi}{3}=-\sqrt{3}
$$

Find the tangents lines to the curve at the pole.

$$
\begin{gathered}
r=2 \sin (3 \theta), 0 \leq \theta \leq \pi \\
\frac{d y}{d x}=\tan 0=0 \quad \frac{d y}{d x}=\tan \frac{\pi}{3}=\sqrt{3} \quad \frac{d y}{d x}=\tan \frac{2 \pi}{3}=-\sqrt{3}
\end{gathered}
$$

Straight lines through the pole are easy.

They are even easier in polar. | $\theta=0$ |
| :--- |
| $\theta=\frac{\pi}{3}$ |
| $\theta=\frac{2 \pi}{3}$ |

Summary

To find tangents at the pole:

- For polar equations, just find θ^{\prime} 's
- For rectangular equations, $d y / d x=\tan (\theta)$, points $=(0,0)$

New type of problem . . .

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

To find horizontal tangents, the numerator of the slope expression must equal zero.

$$
\frac{d y}{d \theta}=0
$$

To find vertical tangents, the denominator of the slope expression must equal zero.

$$
\frac{d x}{d \theta}=0
$$

Example Problem . . .

For the curve, $r=1+\sin \theta$
A) Find the EQUATION for the slopes of the tangent lines
B) Find where there are horizontal tangents
C) Find the slope when $\theta=0$

Example Problem . . .

For the curve, $\quad r=1+\sin \theta$
A) Find the EQUATION for the slopes of the tangent lines

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

A) $\frac{d y}{d x}=\frac{\cos \theta+2 \sin \theta \cos \theta}{-\sin \theta-\sin ^{2} \theta+\cos ^{2} \theta}$
B) Find where there are horizontal tangents

$$
\frac{d y}{d x}=\frac{\cos \theta+2 \sin \theta \cos \theta}{-\sin \theta-\sin ^{2} \theta+\cos ^{2} \theta}
$$

$$
\frac{d y}{d \theta}=0 \Rightarrow \cos \theta+2 \cos \theta \sin \theta=0 \quad \Rightarrow
$$

$$
\begin{array}{cl}
\cos \theta & 1+2 \sin \theta=0 \\
\cos \theta=0 & 1+2 \sin \theta=0 \\
\theta=\frac{\pi}{2}, \frac{3 \pi}{2} & \theta=\frac{11 \pi}{6}, \frac{7 \pi}{6}
\end{array}
$$

We discard $\frac{3 \pi}{2}$ because it makes the derivative undefined

One More Thing

Now that we know there is a horizontal tangent at $\frac{11 \pi}{6}$ let's write the equation of the tangent line at this location.

Remember to write the equation of a line, we need a point and the slope.

We know the slope is zero! Which makes this task easy to deal with once we know the point of tangency.

Example Problem . . .

For the curve, $\quad r=1+\sin \theta$
C) Find the slope when $\theta=0$

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

$$
\begin{aligned}
& \sin (0)= \\
& \cos (0)=
\end{aligned}
$$

Using Calculator to analyze graphs

tRACE
FORMAT Parameters
PolarGC
WINDOW Parameters
θ Min, θ Max
θ Step
Finding Polar intersections
DRAW Menu
Horizontal and Vertical
Tangent

DRAW

Set $r=1+2 \sin \theta$
Set $\quad \theta$ Min $=0$
θ Max $=2 \pi$
θ Step $=\pi / 24$
DRAW Horizontal and Vertical can help visualize and locate tangents.

Option 1:ClrDraw to clear lines

Bring up DRAW menu (2nd PRGM)
Select 3:Horizontal
Use up/down arrows
Press ENTER to fix line

Draw

DRAW Tangent can show tangent at any point and its $d y / d x$ value.
Select 5:Tangent
Use right/left arrows to move around graph to any point

Press ENTER to draw tangent line

