

## HW Questions?



## Tic-Tac-Toe Review

1. If a particle has a velocity vector of, $<t^{2}, \sin \pi t>$
the acceleration at $\mathrm{t}=1$ is... $<2,-\pi>$
2. Write an equation, in standard form, of the line tangent to the curve with parametric equations

$$
\begin{aligned}
& x=3 e^{-t} \text { and } y=6 e^{t} \\
& \text { at } t=0
\end{aligned}
$$

$$
2 x+y=12
$$

3. Which of the following is/are true about this limit statement?

$$
\lim _{x \rightarrow 5} \frac{g(x)-g(5)}{x-5}=0
$$

A) $g(x)$ must be continuous at $x=5$
B) $g(5)=0$
C) $g^{\prime}(5)=0$
D) There is an extrema at $x=5$

## 5. A particle's position

Is described by:

$$
r(t)=(\cos t) i+(t) j
$$

Give its velocity at time $\pi$

$$
0 i+1 j \quad \text { or }\langle 0,1\rangle
$$

4. In the xy plane, what would be

The equation that represents the graph described by

$$
x=2 t+4 \quad y=4 t
$$

$$
y=2 x-8
$$

6. Determine any asymptotes and/or holes of the following function:

$$
\begin{aligned}
& \quad f(x)=\frac{x-2}{x^{2}-4} \\
& \text { Vertical }: \quad x=-2 \\
& \text { Horizontal }: \quad y=0 \\
& \text { Hole: } \quad x=2
\end{aligned}
$$

7. Given the points $A=(3,5)$,

$$
B=(-2,0) \text {, and } C=(-7,-4) \text {, find }
$$

## $\overrightarrow{A B}+\overrightarrow{C B}$

$$
\langle 0,-1\rangle
$$

9. A curve in the xy plane is
defined parametrically by the equations

$$
x=t^{2}+t \text { and } y=t^{2}-t
$$

At what point(s) on this curve are there horizontal tangents?

$$
\left(\frac{3}{4},-\frac{1}{4}\right)
$$

## 8. Find $\frac{d^{2} y}{d x^{2}}$ for the parametric curve defined by:

$$
\begin{gathered}
x=e^{t} \text { and } y=\sin t \\
\frac{d^{2} y}{d x^{2}}=\frac{-\sin t-\cos t}{e^{2 t}}
\end{gathered}
$$

10. Given the points $A=(3,5)$,
$B=(-2,0)$, and $C=(-7,-4)$, find and write $\overrightarrow{B C}$ as a linear combination.

$$
-5 i-4 j
$$

11. If a particle has a position

At any time $t$ of

$$
r(t)=\left(e^{-t}\right) i+\left(t^{2}\right) j
$$

Find its speed at $\mathrm{t}=0$.

$$
\text { speed }=1
$$

13. A particle moves in the $x y$ plane so that at any time $t$ its coordinates are

$$
x=t^{2} \text { and } y=4-t^{3}
$$

Find the acceleration vector:

$$
\langle 2,-6 t\rangle
$$

15. Eliminate the parameter and

Give the equation of the curve

$$
x=t^{2} \text { and } y=t+1
$$

In terms of x and y .

$$
\begin{aligned}
& y= \pm \sqrt{x}+1 \quad \quad(\text { parabola }) \\
& \text { or } x=(y-1)^{2}
\end{aligned}
$$

16. Find the length of the ellipse

$$
x=3 \cos t, \quad y=4 \sin t, \quad 0 \leq t \leq 2 \pi
$$

$$
\int_{0}^{2 \pi} \sqrt{(-3 \sin t)^{2}+(4 \cos t)^{2}} d t
$$

$$
=22.103
$$

17. Find the component form of


$$
\langle-28,4\rangle
$$

18. Integrate: $\int_{0}^{\pi / 4} \tan x \sec ^{2} x d x$
19. Two particles move in the $x y$ plane according to the equations

$$
x=t-2 \text { and } y=(t-2)^{2}
$$

Set up an integral that gives the distance traveled by the particle
from $t=0$ to $t=3$.

$$
D=\int_{0}^{3} \sqrt{1^{2}+(2 t-4)^{2}} d t
$$

20. A particle move in the $x y$-plane according to the equations

$$
x=t-2 \text { and } y=(t-2)^{2}
$$

Find the point(s) where the particle has vertical and horizontal tangents.

No Vertical Tangents
Horizontal Tangent at $t=2(0,0)$

## Reminders

- Test TOMORROW
- 72 minutes for 4 sections
- Includes review of AB Topics
- Study Guide on Edmodo
- Tutoring after school today
- Unit HW Packet due tomorrow

