

Today's Agenda

New Material:
Convergence of Alternating Series
HW Questions/Extra Practice

Quiz:
Direct and Limit Comparison Tests

HW Answers (Spring 2011)

Alternating Series

- Extra Practice Handout
\#6 DV by test for DV
\#9 CV by direct comparison
\#11 DV by test for DV
\#13 DV by integral test
\#32 B
\#33 A
\#34 D
\#35 DV
\#36 CV
\#37 CV to 20
\#38
\#39 E

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}
$$

Terms are alternately positive and negative.
Normally have a (-1) raised to a power Ex:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \ldots
$$

Does the alternating Harmonic Series converge?

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

a) $b_{n}>0$
(necessary for terms to alternate in sign)
b) $b_{n}>b_{n+1}$ for all n Yes
c) $\lim _{n \rightarrow \infty} b_{n}=0$ Yes

Yes

> (necessary for terms to alternate in sign)

Let's see why...

Since the absolute value of the terms decreases to 0 , the partial sums bounce back and forth around some number...

You can probably imagine why this would not work if terms INCREASED in absolute value!

Tonight's HW:
Packet p. 9 (odds) Alternating Series

2.DV	3. CV	4. CV
5. CV	6. CV	7. DV
8.CV	9. CV	10. DV
11. CV	12. CV	13. DV
14. CV	15. CV	16. CV
17. CV	18. DV	19. DV
20. DV		

Estimating what an alternating series
converges to
Done by calculating a partial sum.
Accuracy depends on how many terms are
included in the partial sum
oifference between the actual sum and the partial
sum is the error.
The size of the error is smaller than
Which is the absolute value of the first
"neglected" term.

Alternating Series Estimation Theorem

Ex) Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$
correct to 3 decimal places

Is it convergent?

Now, where is that neglected term?

$\frac{(-1)^{n}}{n!}$	n		S_{n}	$\text { So }, b_{7}=\frac{{ }_{5040}}{<.0002}$
	0	1	1	and $s_{6} \approx .368056$
	1	-1	0	By Alt. Series Estimation Theorem
	2	$\frac{1}{2}$	$\frac{1}{2}$	
	3	- $\frac{1}{6}$. 3333	$\left\|s-s_{6}\right\| \leq b_{7}<.0002$
	4	$\frac{1}{24}$. 375	Which does not affect the $3^{\text {rd }}$ decimal place.
	5	$-\frac{1}{120}=-.008$. 3666	
	6	$\frac{1}{720}=.001$. 368055	
	7	$\frac{1}{5040}=-.0002$		

