

Today's Agenda New Material: Convergence of Alternating Series HW Questions/Extra Practice Quiz: Direct and Limit Comparison Tests

HW Answers (Spring 2011)	
 Extra Practice Handout 	
#6 DV by test for DV	
#9 CV by direct comparison	
#11 DV by test for DV	
#13 DV by integral test	
#32 B	
#33 A	
#34 D	
#35 DV	
#36 CV	
#37 CV to 20	
#38	
#39 E	

Tonight's HW: Packet p. 9 (odds) Alternating Series					
2.DV	3. CV	4. CV			
5. CV	6. CV	7. DV			
8.CV	9. CV	10. DV			
11. CV	12. CV	13. DV			
14. CV	15. CV	16. CV			
17. CV	18. DV	19. DV			
20. DV					

If $(r - \sum (-1)^{n-1} h)$ is the sum of				
$s = \sum_{n=1}^{\infty} (-1)^n v_n$ is the sum of				
a convergent alternating series then				
$\left R_{n}\right =\left s-s_{n}\right \leq b_{n+1}$				

Ex) Find the sum of the series correct to 3 decimal places	$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$	
Is it convergent?		

Now, where is that neglected term?					
$\frac{(-1)^n}{n!}$	n		S _n	$So, b_7 = \frac{1}{5040} < .0002$	
	0	1	1	and $s_6 \approx .368056$	
	1	-1	0	By Alt. Series Estimation	
	2	$\frac{1}{2}$	$\frac{1}{2}$	Ineorem	
	3	$-\frac{1}{6}$.3333	$ s - s_6 \le b_7 < .0002$	
	4	1 24	.375	Which does not affect	
	5	$-\frac{1}{120} =008$.3666	the 3 ^{ra} decimal place.	
	6	$\frac{1}{720} = .001$.368055	$\therefore s \approx .368$	
	7	$-\frac{1}{5040} =0002$			