

BC Calculus

Unit 1 Day 6

Arrival Instructions

Take out your homework

Compare answers with people around you and determine which questions need to be addressed as a class.

HW Questions

BC Calculus

NEW TOPIC Area **Between** Polar Graphs

Day 6

Area Between Two Polar Curves

Determine the area that lies inside $r(\theta) = 3 + 2\sin\theta$ and outside $r(\theta) = 2$.

 First draw a quick sketch of the curves (without using your calculator) Determine the area that lies inside $r(\theta) = 3 + 2\sin\theta$ and outside $r(\theta) = 2$.

Integratin Boundaries . . .

Our integration boundaries need to go from small to large So, we can't use from $\frac{11\pi}{2\pi}$ to $\frac{7\pi}{2\pi}$

The issue . . .

BUT, if we use $\frac{7\pi}{6}$ to $\frac{11\pi}{6}$ we will not be finding the shaded area but instead we would be finding the bottom most of the three regions.

So . . . We need to adjust

Remember $\frac{11\pi}{6}$ and $\frac{\pi}{6}$ are equivalent. And if we use these as the integration boundaries we will enclose the area that we're after.

So . . . We need to adjust

Setup so far is . . .

$$\frac{1}{2} \int_{-\pi/6}^{7\pi/6} something$$

BUT what do we put in for the something?

Let's explore

 \rightarrow

Here is the setup we will need . . .

 $A = \frac{1}{2} \int_{\alpha}^{\beta} R^2 - r^2 d\theta$

Finish the setup

Now for the answer . . .

Lets try another

Find the area outside of r = 2 and inside of $r = 2 + 2\cos\theta$

 Start with a sketch of the curves (WITHOUT a calculator).

Shade the region

Identify if we have a Big R and Little r scenario

How could we make use of symmetry?

Now let's use the calculator

Put BIG R in r₁ and put little r in r₂

Set up the integral—Use your calculator

$$2\left[\frac{1}{2}\int_{0}^{\pi/2} (r_{1})^{2} - (r_{2})^{2} d\theta\right]$$

Questions??

Find the area outside of r = 2 and inside of $r = 2 + 2\cos\theta$

$$2\left[\frac{1}{2}\int_{0}^{\pi/2}(r_{1})^{2}-(r_{2})^{2} d\theta\right]$$

Compare and Contrast?

Find the area enclosed by

 $r(\theta) = \sin \theta$ $r(\theta) = \cos \theta$