BC Calculus

Unit 1 Day 6

Arrival Instructions

- Take out your homework
- Compare answers with people around you and determine which questions need to be addressed as a class.

HW Questions

BC Calculus

NEW TOPIC

Area Between Polar Graphs

Day 6

Area Between Two Polar Curves

Determine the area that lies inside $r(\theta)=3+2 \sin \theta$ and outside $r(\theta)=2$.

- First draw a quick sketch of the curves (without using your calculator)

Determine the area that lies inside $r(\theta)=3+2 \sin \theta$ and outside $r(\theta)=2$

Find θ value of
intersection points of the two curves:

Integratin Boundaries

Our integration boundaries need to go from small to large So, we can't use from $\frac{11 \pi}{6}$ to $\frac{7 \pi}{6}$

The issue

BUT, if we use $\frac{7 \pi}{6}$ to $\frac{11 \pi}{6}$ we will not be finding the shaded area but instead we would be finding the bottom most of the three regions.

So We need to adjust

Remember $\frac{11 \pi}{6}$ and $-\frac{\pi}{6}$ are equivalent. And if we use these as the integration boundaries we will enclose the area that we're after.

So We need to adjust

Setup so far is . . .
$\frac{1}{2} \int_{-\pi / 6}^{7 \pi / 6}$ something

BUT what do we put in for the something?

Let's explore

Here is the setup we will need

$$
A=\frac{1}{2} \int_{\alpha}^{\beta} R^{2}-r^{2} d \theta
$$

Finish the setup

$$
\frac{1}{2} \int_{-\pi / 6}^{7 \pi / 6}\left[3+2 \sin \theta^{2}-(2)^{2}\right] d \theta
$$

Now for the answer . . .

Lets try another

- Find the area outside of $r=2$ and inside of $r=2+2 \cos \theta$
- Start with a sketch of the curves (WITHOUT a calculator).
- Shade the region

Identify if we have a Big R and Little r scenario

How could we make use of

 symmetry?
Now let's use the calculator

Put BIG R in r_{1} and put little r in r_{2}

Set up the integral-Use your calculator

$$
2\left[\frac{1}{2} \int_{0}^{\pi / 2}\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2} d \theta\right]
$$

Questions??

Find the area outside of $r=2$ and inside of $r=2+2 \cos \theta$

$$
2\left[\frac{1}{2} \int_{0}^{\pi / 2}\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2} d \theta\right]
$$

Compare and Contrast?

Find the area enclosed by

$r(\theta)=\sin \theta$
$r(\theta)=\cos \theta$

