BC Calculus

Day 6

Taylor \& Maclaurin Polynomials

WARMUP

$$
g(x)=\frac{e^{x}-1}{x^{2}}
$$

Find the $1^{\text {st }}$ three terms of a series for $g(x)$ and the $\mathrm{n}^{\text {th }}$ term.

$$
\begin{array}{rlrl}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots & e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
e^{x}-1 & =x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\frac{e^{x}-1}{x^{2}} & =\frac{x}{x^{2}}+\frac{x^{2}}{x^{2} 2!}+\frac{x^{3}}{x^{2} 3!}+\cdots=x^{-1}+\frac{1}{2!}+\frac{x}{3!}+\cdots+\frac{x^{n-1}}{n+1!}+\cdots
\end{array}
$$

Use a Maclaurin series derived in this section to find a Maclaurin series for the following

Find the Maclaurin series for $\frac{(1+\cos 2 x)}{2}$

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots \quad \text { (from previous slide) } \\
\cos 2 x & =1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots+(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!}+\cdots \\
1+\cos 2 x & =2-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots+(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!}+\cdots \\
\frac{1+\cos 2 x}{2}= & =\frac{2}{2}-\frac{(2 x)^{2}}{2!2}+\frac{(2 x)^{4}}{4!2}-\cdots+(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!2}+\cdots
\end{aligned}
$$

One more example:
 Packet pg. 2, \#11

HW Questions

BC Calculus

Day 6

Taylor \& Maclaurin Polynomials

Did you Memorize These? (In your packet, page 5.)

$$
\begin{array}{ll}
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots & \text { all real \#s } \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+-1^{n} \frac{x^{2 n+1}}{2 n+1!}+\cdots & \text { all real \#s } \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+-1^{n} \frac{x^{2 n}}{2 n!}+\cdots & \text { all real \#s } \\
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots & -1<x \leq 1
\end{array}
$$

BUT why memorize these? Saves TIME!!

Put this in your NOTES (example)

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Find the Maclaurin series for $f(x)=e^{-3 x}$

$$
e^{-3 x}=\sum_{n=0}^{\infty} \frac{(-3 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 x)^{n}}{n!}
$$

A neat little problem--NOTES

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n} n!}=?
$$

This resembles our series for e^{x}

$$
=\sum_{n=0}^{\infty} \frac{3 / 5^{n}}{n!}
$$

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

But...

How useful is an infinite series if we still cannot determine what it converges to?

We can estimate to whatever accuracy we want using partial sums!

Partial Sums of $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ Taylor Series

$$
T_{0} x=1
$$

$$
T_{1} x=1+x
$$

$$
T_{2} \quad x=1+x+\frac{x^{2}}{2!}
$$

The more terms we add, The more accurate we get.

Taylor Polynomial

Notice there is no

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{n}(a)}{n!}(x-a)^{0^{\circ}}{ }^{\circ}
$$

T_{n} is called the $n^{\text {th }}$-degree Taylor polynomial of f at a

$$
T_{4} x=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \quad 4^{\text {th }} \text { degree Taylor Polynomial centered } \begin{aligned}
& \text { at } 0 \text { (i.e. Maclaurin) polynomial of } \mathrm{e}^{\mathrm{x}}
\end{aligned}
$$

Key Distinction between Taylor Series and Taylor Polynomial

Taylor Series is the infinite series
Taylor Polynomial is a partial sum of a Taylor Series

What the instructions might state . .

Write an $n^{\text {th }}$ degree \Longleftrightarrow Go up to the term of that degree
Write n terms \Longleftrightarrow Write this many, non-zero terms, regardless of degree

Find the $5^{\text {th }}$ degree Maclaurin polynomial for $f(x)=\sin (x)$

n	Derivative	Centered at $\mathbf{a}=\mathbf{0}$
0	$f(x)=\sin x$	$=0$
1	$f^{\prime}(x)=\cos x$	$=1$
2	$f^{\prime \prime}(x)=-\sin x$	$=0$
3	$f^{\prime \prime \prime}(x)=-\cos x$	$=-1$
4	$f^{4}(x)=\sin x$	$=0$
5	$f^{5}(x)=\cos x$	$=1$

Find the $5^{\text {th }}$ degree Maclaurin polynomial for $f(x)=\sin (x)$ at $a=0$

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n} \quad \text { Now substituting } \\
& \sin x=0+x+\frac{0}{2!} x^{2}-\frac{1}{3!} x^{3}+\frac{0}{4!} x^{4}+\frac{1}{5!} x^{5}
\end{aligned}
$$

Instructions state find the $5^{\text {th }}$ degree polynomial, so we stop here.

Why do we care? The more terms you add to the

 partial sum, the closer the series fits the function.
(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

If we needed the complete series

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+-1{ }^{n=0} \frac{x^{? ? ?}}{? ? ?!}+\cdots
\end{aligned}
$$

$$
=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots-1^{n} \frac{x^{2 n+1}}{2 n+1!}+\cdots
$$

Did you Memorize These??

$$
\begin{array}{ll}
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots & \text { all real \#s } \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+-1^{n} \frac{x^{2 n+1}}{2 n+1!}+\cdots & \text { all real \#s } \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+-1^{n} \frac{x^{2 n}}{2 n!}+\cdots & \text { all real \#s } \\
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots & -1<x \leq 1
\end{array}
$$

A little REVIEW--Find the Interval of Convergence

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots-1^{n} \frac{x^{2 n+1}}{2 n+1!}+\cdots
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)+1}}{2(n+1)+1!} \cdot \frac{2 n+1!}{x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+3}}{2 n+3!} \cdot \frac{2 n+1!}{x^{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{2}}{2 n+22 n+3}\right|=0<1
\end{aligned}
$$

Therefore CV for all real \#s

DIFFERENT type of EXAMPLE PROBLEM:

Given the following information about a function and its first three derivatives, write the $3^{\text {rd }}$ degree Taylor Polynomial centered at $x=2$.

$$
\begin{array}{ll}
f(2)=4 & \text { We do not know the function, } \\
f^{\prime}(2)=3 & \text { do know its derivative values. } \\
f^{\prime \prime}(2)=5 & \\
f^{\prime \prime \prime}(2)=7 & \\
T_{3}(x)=4+3(x-2)+\frac{5}{2}(x-2)^{2}+\frac{7}{3!}(x-2)^{3} \\
T_{3}^{\prime}(x)=3+5(x-2)+\frac{7}{2}(x-2)^{2}
\end{array}
$$

