

### Day 6 Taylor & Maclaurin Polynomials



Use a Maclaurin series derived in this section to find a Maclaurin series for the following . . .

Find the Maclaurin series for 
$$\frac{(1+\cos 2x)}{2}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$
 (from previous slide)

$$\cos 2x = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} + \dots$$

$$1 + \cos 2x = 2 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} + \dots$$

$$\frac{1+\cos 2x}{2} = \frac{2}{2} - \frac{(2x)^2}{2!2} + \frac{(2x)^4}{4!2} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!2} + \dots$$

One more example: Packet pg. 2, #11





### Day 6 Taylor & Maclaurin Polynomials

### Did you Memorize These? (In your packet, page 5.)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

all real #s

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + -1^n \frac{x^{2n+1}}{2n+1!} + \dots \quad \text{all real #s}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + -1^n \frac{x^{2n}}{2n!} + \dots \qquad \text{all real #s}$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots -1 < x \le 1$$



Find the Maclaurin series for  $f(x) = e^{-3x}$ 

$$e^{-3x} = \sum_{n=0}^{\infty} \frac{(-3x)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n (3x)^n}{n!}$$

## A neat little problem--NOTES

$$\sum_{n=0}^{\infty} \frac{3^n}{5^n n!} = ?$$

This resembles our series for e<sup>x</sup>

$$=\sum_{n=0}^{\infty}\frac{3/5^{n}}{n!}$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$





## How useful is an infinite series if we still cannot determine what it converges to?

## We can estimate to whatever accuracy we want using partial sums!





#### T<sub>n</sub> is called the *n*<sup>th</sup>-degree **Taylor polynomial** of *f* at *a*

$$T_4 \quad x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$$
 4<sup>th</sup> degree Taylor Polynomial centered  
at 0 (i.e. Maclaurin) polynomial of e<sup>x</sup>

Key Distinction between Taylor Series and Taylor Polynomial

Taylor **Series** is the infinite series

Taylor Polynomial is a partial sum of a Taylor Series



Write an  $n^{th}$  degree  $\longrightarrow$  Go up to the term of that degree

Write *n* terms >>>> Write this many, non-zero terms, regardless of degree



| п | Derivative          | Centered at a=0 |
|---|---------------------|-----------------|
| 0 | $f(x) = \sin x$     | =0              |
| 1 | $f'(x) = \cos x$    | = 1             |
| 2 | $f''(x) = -\sin x$  | =0              |
| 3 | $f'''(x) = -\cos x$ | = -1            |
| 4 | $f^4(x) = \sin x$   | = 0             |
| 5 | $f^5(x) = \cos x$   | = 1             |

Find the 5<sup>th</sup> degree Maclaurin polynomial for f(x)=sin(x) at a = 0

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$$
 Now substituting

$$\sin x = 0 + x + \frac{0}{2!}x^2 - \frac{1}{3!}x^3 + \frac{0}{4!}x^4 + \frac{1}{5!}x^5$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Instructions state find the 5<sup>th</sup> degree polynomial, so we stop here.

# Why do we care? The more partial su

The more terms you add to the partial sum, the closer the series fits the function.



## If we needed the complete series

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots - 1^n \frac{x^{2n+1}}{2n+1!} + \dots$$

#### Did you Memorize These??

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$
 all real #s

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + -1^n \frac{x^{2n+1}}{2n+1!} + \dots \quad \text{all real #s}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + -1^n \frac{x^{2n}}{2n!} + \dots$$
 all real #s

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots -1 < x \le 1$$

## A little REVIEW--Find the Interval of Convergence

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots - 1^n \frac{x^{2n+1}}{2n+1!} + \dots$$

$$\lim_{n \to \infty} \left| \frac{x^{2(n+1)+1}}{2(n+1)+1!} \cdot \frac{2n+1!}{x^{2n+1}} \right| = \lim_{n \to \infty} \left| \frac{x^{2n+3}}{2n+3!} \cdot \frac{2n+1!}{x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^2}{2n+2 \quad 2n+3} \right| = 0 < 1$$

Therefore CV for all real #s

**DIFFERENT** type of EXAMPLE PROBLEM: Given the following information about a function and its first three derivatives, write the 3<sup>rd</sup> degree Taylor Polynomial centered at x = 2.

We do not know the function, but we  

$$f'(2)=3$$
 do know its derivative values.  
 $f''(2)=5$ 

$$T_{3}(x) = 4 + 3(x-2) + \frac{5}{2}(x-2)^{2} + \frac{7}{3!}(x-2)^{3}$$
$$T'_{3}(x) = 3 + 5(x-2) + \frac{7}{2}(x-2)^{2}$$

f'''(2) = 7