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Arrival:
Summarize the Series Tests So Far 
(Use packet p. 1 if you want)

�Geometric Series: 

DV or CV AND the CV value

�Divergence Test: 

DV or Inconclusive

�Telescoping: 

DV or CV AND the CV value

�P-Series Test   

DV or CV BUT NOT the CV value
�Integral Test

DV or CV BUT NOT the CV value

Coming UP . . .

Comparison Tests

Direct and Limit 

Quick Review…CV or DV?
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Compare these series . . . 
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If a series has terms SMALLER than that of 
another known CONVERGENT series, than 
the smaller also CONVERGES.  

How do the terms in these series compare ? 
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Use the Integral Test to answer . . . 
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Now a comparison . . .  
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Pulling out the constant,

How do the terms in this series 
compare to the Harmonic series? 

Conclusion . . . .
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If we have a series whose terms are LARGER 
than the terms of a known DIVERGENT series, 
than the larger series will DIVERGE too! 

DIRECT COMPARISON TEST (DCT)
for series with POSITIVE TERMS
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DIRECT COMPARISON TEST
for series with POSITIVE TERMS

�Picking what to compare to . . . 
– Geometric Series

– P-Series

Look for a SIMPLE series to compare to
BUT be careful.  
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If the series is...                              Might try 

                                                      Comparing to...
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*Disregard everything  except the highest powers of n in 

the numerator and denominator when picking your series 
to compare to. *

BUT for this problem WHAT is WRONG with even 
attempting to use the DCT?  

Hint: What is the value of the first term?
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Write out a few terms to see why this won’t work.  

Look for a SIMPLE series to compare to
BUT be careful.  

Finally an example that DCT does  
work for . . . . 
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Try this . . . 
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What would you pick as the comparison series?

New Test--LIMIT COMPARISON 
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LCT CONTINUED

�If

�If                                                            

lim 0 and  converges, n
n

n
n

a
b

b→∞
= ∑

then converges.na∑

lim and  diverges, n
n

n
n

a
b

b→∞
= ∞ ∑

then diverges.na∑

Examples of Limit Comparisons
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Examples of Limit Comparisons
SOLUTIONS
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Examples of Limit Comparisons
SOLUTIONS
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YOU TRY the third one…
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Since this # > 0, these series behave the same.
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Packet p.8 (even)
12.4 Direct and Limit Comparison

QUIZ TOMORROW
Telescoping
Integral Test
Direct and Limit Comparison Tests


