

BC Calculus

Unit 1 Day 5

Warmup

1. The area of the region bounded by $y = e^{2x}$, the y-axis, the x-axis, and the line x = 2 is equal to:

(A)
$$\frac{e^4}{2} - e$$
 (B) $\frac{e^4}{2} - 1$ (C) $\frac{e^4}{2} - \frac{1}{2}$
(D) $2e^4 - e$ (E) $2e^4 - 2$

Warmup

1. The area of the region bounded by $y = e^{2x}$, the y-axis, the x-axis, and the line x = 2 is equal to:

(A)
$$\frac{e^4}{2} - e$$
 (B) $\frac{e^4}{2} - 1$ (C) $\frac{e^4}{2} - \frac{1}{2}$
(D) $2e^4 - e$ (E) $2e^4 - 2$

Today's Agenda . . .

Address questions on "self-study" of Length of Polar Curves

HW Questions

New topic Area BOUNDED by Polar Curve

Questions about *Self-Study* Arc Length of Polar Curves

HW Questions

Answers:

55) 16π
57) 4π
59) 8

56) 2aπ 58) 2aπ 60) 64

Calculus BC

NEW TOPIC Area **Enclosed** by Polar Graphs

Day 5

Today's topic—Finding Area Enclosed by Polar Curve

- Note we are finding area "enclosed by" instead of "under" the polar curve!
- Remember in Calculus AB we used rectangles to approximate the area between a curve and the x-axis or between two curves.
- For polar graphs, we will be using *sectors* of a circle to approximate the area enclosed by a polar curve.

From Geometry:

Given a circle with radius of r.

The area of the sector with central angle θ , measured in radians, is $A_{\text{sector}} = \frac{1}{2}r^2\theta$

Below is the graph of the polar curve $r = f(\theta)$:

We'll be looking for the shaded area in the sketch above

The interval $[\alpha, \beta]$ is divided into *n* subintervals. The length of each subinterval is $\frac{\beta - \alpha}{n}$

Let θ_k be the midpoint of a subinterval.

Construct a circular sector with the center at the origin, radius $r_k = f(\theta_k)$ and central angle $\Delta \theta_k$.

The area of this constructed sector is therefore equal to $A_k = \frac{1}{2} r_k^2 \Delta \theta_k$

If we repeat this process "n" times then the approximate area of the shaded region would be:

$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} \frac{1}{2} r_k^2 \Delta \theta_k$$

As the number of subintervals increases, the approximation of the area continues to improve and

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2} r_k^2 \Delta \theta_k = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$$

So, the area of the shaded region can be calculated using

$$A_{enclosed_by_polar_curve} = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$$

Example: Find the area enclosed by: $r = 2 \ 1 + \cos \theta$

Using Symmetry Properties can save you time...

Pay close attention for multiple choice questions.

The area bounded by the curve $r = 2\cos\theta$

can be either of the following integrals . . .

Check by evaluating on the calculator.

Another Example Problem

Determine the area of the inner loop of

$$r(\theta) = 2 + 4\cos\theta$$

To do this we will need the θ values that generate the inner loop.

Since we know there is a location on the curve where r=0, set the equation equal to zero and solve.

$2+4\cos\theta=0$

this point?

 $r(\theta) = 2 + 4\cos\theta$

