BC Calculus

Unit 1 Day 5

$$
r=2 \sin 2.15 \theta
$$

$$
0 \leq \theta \leq 16 \pi
$$

Warmup

1. The area of the region bounded by $y=e^{2 x}$, the y-axis, the x -axis, and the line $x=2$ is equal to:
(A) $\frac{e^{4}}{2}-e$
(B) $\frac{e^{4}}{2}-1$
(C) $\frac{e^{4}}{2}-\frac{1}{2}$
(D) $2 e^{4}-e$
(E) $2 e^{4}-2$

Warmup

1. The area of the region bounded by $y=e^{2 x}$, the y-axis, the x -axis, and the line $x=2$ is equal to:
(A) $\frac{e^{4}}{2}-e$
(B) $\frac{e^{4}}{2}-1$
(D) $2 e^{4}-e$
(E) $2 e^{4}-2$

Today's Agenda

- Address questions on "self-study" of Length of Polar Curves
- HW Questions
- New topic Area BOUNDED by Polar Curve

Questions about Self-Study Arc Length of Polar Curves

HW Questions

Answers:
55) 16π
57) 4π
59) 8
56) $2 a \pi$
58) $2 a \pi$
60) 64

Calculus BC

NEW TOPIC

Area Enclosed by Polar Graphs

Day 5

Today's topic-Finding Area Enclosed by Polar Curve

- Note we are finding area "enclosed by" instead of "under" the polar curve!
- Remember in Calculus AB we used rectangles to approximate the area between a curve and the x-axis or between two curves.
- For polar graphs, we will be using sectors of a circle to approximate the area enclosed by a polar curve.

From Geometry:

- Given a circle with radius of r.
- The area of the sector with central angle θ, measured in radians, is

$$
A_{\text {sector }}=\frac{1}{2} r^{2} \theta
$$

Below is the graph of the polar curve $r=f(\theta)$:

We'll be looking for the shaded area in the sketch above

The interval $[\alpha, \beta]$ is divided into n subintervals. The length of each subinterval is

$$
\frac{\beta-\alpha}{n}
$$

Let θ_{k} be the midpoint of a subinterval.
Construct a circular sector with the center at the origin, radius $r_{k}=f\left(\theta_{k}\right)$ and central angle $\Delta \theta_{\mathrm{k}}$.

The area of this constructed sector is therefore equal to $\quad A_{k}=\frac{1}{2} r_{k}^{2} \Delta \theta_{k}$

If we repeat this process " n " times then the approximate area of the shaded region would be:

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{1}{2} r_{k}^{2} \Delta \theta_{k}
$$

As the number of subintervals increases, the approximation of the area continues to improve and

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{2} r_{k}^{2} \Delta \theta_{k}=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta
$$

So, the area of the shaded region can be calculated using

$$
A_{\text {enclosed_}_{-} b y_{-} p o l a r_{-} c u r v e}=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta
$$

Example: Find the area enclosed by: $r=21+\cos \theta$

Using Symmetry Properties can save you time...

$r=2 \sin 2 \theta$

None
Area of one leaf times 4: Area of four leaves:

$$
A=4 \cdot \frac{1}{2} \int_{0}^{\frac{\pi^{2}}{2}}[2 \sin 2 \theta]^{2} d \theta \quad A=\frac{1}{2} \int_{0}^{2 \pi}[2 \sin 2 \theta]^{2} d \theta
$$

$$
A=2 \pi
$$

Pay close attention for multiple choice questions.

The area bounded by the curve $r=2 \cos \theta$
can be either of the following integrals . . .

Another Example Problem

Determine the area of the inner loop of

$$
r(\theta)=2+4 \cos \theta
$$

To do this we will need the θ values that generate the inner loop.

Since we know there is a location on the curve where $r=0$, set the equation equal to zero and solve.

$2+4 \cos \theta=0$

Checking for understanding . . What are the polar coordinates of this point?
$=\sim$ -

$$
\begin{aligned}
& \int_{2 \pi / 3}^{4 \pi / 3} \frac{1}{2} 2+4 \cos \theta^{2} d \theta \\
& =\int_{2 \pi / 3}^{4 \pi / 3} \frac{1}{2} 4+16 \cos \theta+16 \cos ^{2} \theta d \theta \\
& \int_{2 \pi / 3}^{4 \pi / 3} 2+8 \cos \theta+8 \cos ^{2} \theta d \theta \\
& =\int_{2 \pi / 3}^{4 \pi / 3}\left(2+8 \cos \theta+8\left(\frac{1+\cos 2 \theta}{2}\right)\right) d \theta=4 \pi-6 \sqrt{3}
\end{aligned}
$$

