BC Calculus

Day 5
 Taylor \& Maclaurin
 Series

WARMUP—Calculus AB Review Problems

x	2	5	7	8
$f(x)$	10	30	40	20

c 98-38 The function f is continous on the closed interval $[2,8]$ and has values that are given in the table above. Using the subintervals [2,5], [5, 7], and [7,8], what is the trapezoidal approximation of $\int_{2}^{8} f(x) d x$?
(A) 110
(B) 130
(C) 160
(D) 190
(E) 210
c98-40 Which of the following is an equation of the line tangent to the graph of $f(x)=x^{4}+2 x^{2}$ at the point where $f^{\prime}(x)=1$?
(A) $y=8 x-5$
(B) $y=x+7$
(C) $y=x+0.763$
(D) $y=x-0.122$
(E) $y=x-2.146$

x	2	5	7	8
$f(x)$	10	30	40	20

c 98-38 The function f is continous on the closed interval $[2,8]$ and has values that are given in the table above. Using the subintervals [2,5], $[5,7]$, and $[7,8]$, what is the trapezoidal approximation of $\int_{2}^{8} f(x) d x$?
(A) 110
(B) 130
(C) 160
(D) 190
(E) 210

C98-40 Which of the following is an equation of the line tangent to the graph of $f(x)=x^{4}+2 x^{2}$ at the point where $f^{\prime}(x)=1$?
(A) $y=8 x-5$
(B) $y=x+7$
(C) $y=x+0.763$

HW Questions

Packet p. 3 (Free Response Practice)

BC Calculus

Day 5
 Taylor \& Maclaurin
 Series

Our story so far

Geometric Series

Power Series

Taylor Series

Maclaurin Series

How we have used power series

We found power series representations when functions or their integrals or derivatives were of form

$$
\frac{a}{1-r}
$$

$$
f(x)=\frac{1}{1-2 x}
$$

$$
f(x)=\tan ^{-1} x
$$

Today, our goal is the same but our method is different.

Why are we bothering?

$$
\cos 0=1
$$

$$
\sqrt[3]{8}=2
$$

$$
\ln 1=0
$$

$$
e^{1}=e
$$

Easily memorized and recalled

$$
\begin{aligned}
\cos 2 & =? \\
\sqrt[3]{2} & =? \\
\ln 2 & =? \\
e^{2} & =?
\end{aligned}
$$

Series give us the means to approximate the value of functions

Consider $f(x)=\cos x$

This is not in $\frac{a}{1-r}$ form, nor is its derivative or integral.

But finding a powers series representation is still worthwhile.

$$
\cos x=\sum_{n=0}^{\infty} ?
$$

Let's start with our power series template

$$
f(x)=\cos x=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots
$$

Where is the series centered?
Our goal is to solve for all the c_{s}
Let $x=0$

$$
c_{0}=\cos 0 \quad c_{0}=1
$$

The result

$$
\cos x=1+\cdots
$$

We have our first term!

Now, let's get creative

$f(x)=\cos x=1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots$
Getting the x^{2} terms and later to disappear:
Take the derivative of each side

$$
\begin{aligned}
& f^{\prime}(x)=-\sin x=c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots+n c_{n} x^{n-1}+\cdots \\
& \text { Let } x=0
\end{aligned}
$$

$$
-\sin 0=c_{1} \quad c_{1}=0
$$

$$
f(x)=\cos x=1+0 x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots
$$

Let's keep going

$$
f^{\prime}(x)=-\sin x=0+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots+n c_{n} x^{n-1}+\cdots
$$

Take the derivative again of each side

$$
\begin{gathered}
f^{\prime \prime}(x)=-\cos x=2 c_{2}+2 \cdot 3 c_{3} x+3 \cdot 4 c_{4} x^{2}+\cdots+(n-1) n c_{n} x^{n-2} \\
\text { Let } x=0 . \\
-\cos 0=2 c_{2} \quad c_{2}=-\frac{1}{2}
\end{gathered}
$$

$$
\cos x=1+0 x-\frac{1}{2} x^{2}+\cdots
$$

$$
f(x)=\cos x=1+0 x-\frac{x^{2}}{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots
$$

Again

$$
f^{\prime \prime}(x)=-\cos x=2\left(-\frac{1}{2}\right)+2 \cdot 3 c_{3} x+3 \cdot 4 c_{4} x^{2}+\cdots+(n-1) n c_{n} x^{n-2}
$$

Take the derivative again of each side

$$
\begin{gathered}
f^{\prime \prime \prime}(x)=\sin x=2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} x+\cdots+(n-2)(n-1) n c_{n} x^{n-3} \\
\text { Let } x=0 . \\
\sin 0=2 \cdot 3 \cdot c_{3} \quad c_{3}=0
\end{gathered}
$$

$$
\cos x=1+0 x-\frac{x^{2}}{2}+0 x^{3}+\cdots
$$

$$
f(x)=\cos x=1+0 x-\frac{x^{2}}{2}+0 x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots
$$

Yep, again

$$
\begin{gathered}
f^{\prime \prime \prime}(x)=\sin x=0+2 \cdot 3 \cdot 4 c_{4} x+\cdots+(n-2)(n-1) n c_{n} x^{n-3} \\
f^{4}(x)=\cos x=2 \cdot 3 \cdot 4 c_{4}+\cdots+(n-3)(n-2)(n-1) n c_{n} x^{n-4} \\
\text { Let } x=0 .
\end{gathered}
$$

$$
\cos 0=2 \cdot 3 \cdot 4 c_{4} \quad c_{4}=\frac{1}{2 \cdot 3 \cdot 4}=\frac{1}{4!}
$$

$$
\cos x=1+0 x-\frac{x^{2}}{2}+0 x^{3}+\frac{x^{4}}{4!}+\cdots
$$

Continuing we would get

$$
\cos x=1+0 x-\frac{x^{2}}{2}+0 x^{3}+\frac{x^{4}}{4!}+0 x^{5}-\frac{x^{6}}{6!}+0 x^{7}+\frac{x^{8}}{8!} \cdots
$$

What is the general pattern in terms of n ?

$$
\begin{array}{r}
\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!} \cdots \\
\mathrm{n}=0 \mathrm{n}=1 \mathrm{n}=2 \mathrm{n}=3 \mathrm{n}=4
\end{array}
$$

nth term

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+\cdots+(-1)^{7} \frac{x^{?}}{?}+\cdots \\
& n=0 n=1 n=2 \quad n=3 n=4
\end{aligned}
$$

NOTE the +
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+-1^{n} \frac{x^{2 n}}{2 n!}+\cdots=\sum_{n=0}^{\infty}-1^{n} \frac{x^{2 n}}{2 n!}$

PUT THIS in YOUR NOTES

Now we can appoximate the value of $f(2)=\cos (2)$

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+-1^{n} \frac{x^{2 n}}{2 n}+\cdots=\sum_{n=0}^{\infty}-1^{n} \frac{x^{2 n}}{2 n!}
$$

$$
f(2)=\cos 2=1-\frac{2^{2}}{2}+\frac{2^{4}}{4!}-\frac{2^{6}}{6!}+\cdots+-1^{n} \frac{2^{2 n}}{2 n!}+\cdots
$$

NOTE: The more terms of the series that are used, the better the approximation.

What is the interval of convergence?

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+-1^{n} \frac{x^{2 n}}{2 n!}+\cdots=\sum_{n=0}^{\infty}-1^{n} \frac{x^{2 n}}{2 n!}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+1}}{2 n+1!} \cdot \frac{2 n!}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{2 n+2!} \cdot \frac{2 n!}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|x^{2} \frac{1}{2 n+1} \frac{1}{2 n+2}\right|=0
$$

$0<1 \quad$ Regardless of what x equals
$\therefore \quad$ Series converges for all real \#s

Awesome?

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+-1^{n} \frac{x^{2 n}}{2 n!}+\cdots
$$

For all real \#s

And all we needed to know was how $\cos x$ behaves at $x=0$.

Generalizing for a power series centered at any $x=a$ not just 0

Power series centered at $x=a$.

$$
\begin{gathered}
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots \\
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+(n) c_{n}(x-a)^{n-1}+\cdots \\
f^{\prime \prime}(x)=2 c_{2}+\cdots+(n-1)(n) c_{n}(x-a)^{n-2}+\cdots
\end{gathered}
$$

$$
\begin{gathered}
f^{\prime \prime \prime}(x)=\cdots+(n-2)(n-1)(n) c_{n}(x-a)^{n-3}+\cdots \\
f^{n}(x)=(1)(2) \cdots(n-3)(n-2)(n-1)(n) c_{n}+\cdots \\
f^{n}(x)=n!c_{n}+\cdots
\end{gathered}
$$

We have a formula to determine each coefficient.

Think about what is happening

Every time we take a derivative,

The first degree term becomes just a constant.

The rest of the terms go away when we let $x=0$.

Definition: Taylor Series

if f is a function with derivatives of all orders throughout some open interval containing a, then:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
$$

$$
=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
$$

$0!=1$, so the first term will always end up being $f(a)$.
A Taylor Series centered at $\boldsymbol{a}=\mathbf{0}$ is known as a Maclaurin Series.

Ex) Find the Maclaurin series for $f(x)=e^{x}$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
$$

n	$f^{n}(x)$	$f^{n}(a)=f^{n}\left(__\right)$
0	$f(x)=e^{x}$	$f(0)=1$
1	$f^{\prime}(x)=e^{x}$	$f^{\prime}(0)=1$
2	$f^{\prime \prime}(x)=e^{x}$	$f^{\prime \prime}(0)=1$
3	$f^{\prime \prime \prime}(x)=e^{x}$	$f^{\prime \prime \prime}(0)=1$
4	$f^{4}(x)=e^{x}$	$f^{4}(0)=1$

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
$$

Let's build our series

$$
e^{x}=1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots
$$

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\end{aligned}
$$

Now approximate the value of $f(5)$

$$
\begin{aligned}
& \text { NOTE the }+\ldots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\end{aligned}
$$

$$
f(5)=e^{5}: \quad e^{5}=1+5+\frac{5^{2}}{2}+\frac{5^{3}}{3!}+\cdots
$$

NOTE: The more terms of the series that are used the better the approximation.

To find the interval of convergence, do Ratio Test on $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|$

$$
=\lim _{n \rightarrow \infty}\left|x \frac{1}{n+1}\right|=0<1
$$

The series converges for all real \#s and the radius of convergence is $R=\infty$

And we only needed to know behavior at $x=0$

Another Ex) Find a power series expansion for $f(x)=\ln (x)$ centered at 1.

n	$f^{n}(x)$	$f^{n}(a)=f^{n}\left(__\right)$
0	$f(x)=\ln x$	$f(1)=0$
1	$f^{\prime}(x)=\frac{1}{x}$	$f^{\prime}(1)=1$
2	$f^{\prime \prime}(x)=-\frac{1}{x^{2}}$	$f^{\prime \prime}(1)=-1$
3	$f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}$	$f^{\prime \prime \prime}(1)=2!$
4	$f^{4}(x)=-\frac{2 \cdot 3}{x^{4}}=\frac{3!}{x^{4}}$	$f^{4}(1)=-2 \cdot 3=-3!$
5	$f^{5} x=\frac{2 \cdot 3 \cdot 4}{x^{5}}=\frac{4!}{x^{5}}$	$f^{5} 1=2 \cdot 3 \cdot 4=4!$

$$
\begin{aligned}
& f(1)=0 \\
& f^{\prime}(1)=1 \\
& f^{\prime \prime}(1)=-1 \\
& f^{\prime \prime \prime}(1)=2! \\
& f^{4}(1)=-3! \\
& f^{5} 1=4!
\end{aligned}
$$

Now let's write our series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
$$

$$
f(x)=0+1(x-1)-\frac{(x-1)^{2}}{2!}+\frac{2!(x-1)^{3}}{3!}-\frac{3!(x-1)^{4}}{4!}+\ldots
$$

$$
f(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots+(-1)^{2-1} \frac{(x-1)^{1}}{n}+\cdots
$$

Find the Interval of Convergence

$$
\ln x-1=\sum-1^{n-1} \frac{x-1^{n}}{n}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{x-1^{n+1}}{n+1} \cdot \frac{n}{x-1^{n}}\right|=\lim _{n \rightarrow \infty}\left|x-1 \cdot \frac{n}{n+1}\right|=|x-1| \\
-1<x-1<1 \\
0<x<2
\end{gathered}
$$

Memorize These

$$
\begin{array}{ll}
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots & \text { all real \#s } \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+-1^{n} \frac{x^{2 n+1}}{2 n+1!}+\cdots & \text { all real \#s } \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+-1^{n} \frac{x^{2 n}}{2 n!}+\cdots & \text { all real \#s } \\
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots & -1<x \leq 1
\end{array}
$$

Use a Maclaurin series derived in this section to find a Maclaurin series for the following

Find the Maclaurin series for $\frac{(1+\cos 2 x)}{2}$

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots \quad \text { (from previous slide) } \\
\cos 2 x & =1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots+(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!}+\cdots \\
1+\cos 2 x & =2-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots+(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!}+\cdots \\
\frac{1+\cos 2 x}{2}= & \frac{2}{2}-\frac{(2 x)^{2}}{2!2}+\frac{(2 x)^{4}}{4!2}-\cdots+(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!2}+\cdots
\end{aligned}
$$

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad g(x)=\frac{e^{x}-1}{x^{2}}
$$

Find the $1^{\text {st }}$ three terms of a series for $g(x)$ and the $\mathrm{n}^{\text {th }}$ term.

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
e^{x}-1 & =x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\frac{e^{x}-1}{x^{2}} & =\frac{x}{x^{2}}+\frac{x^{2}}{x^{2} 2!}+\frac{x^{3}}{x^{2} 3!}+\cdots=x^{-1}+\frac{1}{2!}+\frac{x}{3!}+\cdots+\frac{x^{n-1}}{n+1!}+\cdots
\end{aligned}
$$

PRACTICE

