

Day 5 Taylor & Maclaurin Series

WARMUP—Calculus AB Review Problems

	- VI		1.7	T.	
x	2	. 5		7 8	
f(x)	10	30	4	40 20	
c 98-38 The values that	e function f is a it are given in	continous on the table above	ne closed interest in the closed interest in the second seco	terval [2, 8] and h e subintervals [2,	as 5],
[5, 7], and	l [7, 8], what i	s the trapezoid	al approxin	nation of $\int_{a}^{b} f(x) dx$?
(A) 110	(B) 130 (C) 160 (D)	190 (E)	210	

c 98-40 Which of the following is an equation of the line tangent to the graph of $f(x) = x^4 + 2x^2$ at the point where f'(x) = 1?

(A) y = 8x - 5 (B) y = x + 7 (C) y = x + 0.763(D) y = x - 0.122 (E) y = x - 2.146

$f(x)$ 10304020constrained by the subset of the function f is continuous on the closed interval [2, 8] and has values that are given in the table above. Using the subintervals [2, 5]5, 7], and [7, 8], what is the trapezoidal approximation of $\int_{2}^{8} f(x) dx$?A) 110 (B) 130 (C) 160 (D) 190 (E) 210Sector for the following is an equation of the line tangent to the traph of $f(x) = x^4 + 2x^2$ at the point where $f'(x) = 1$?	x	2	. 5	7	. 8
The function f is continous on the closed interval [2, 8] and has values that are given in the table above. Using the subintervals [2, 5] [5, 7], and [7, 8], what is the trapezoidal approximation of $\int_{2}^{8} f(x)dx$? (A) 110 (B) 130 (C) 160 (D) 190 (E) 210 (C) 190 (D) 190 (E) 210 (E) 210 (C) 190 (E) 210 (E	f(x)	10	30	40	20
Which of the following is an equation of the line tangent to the graph of $f(x) = x^4 + 2x^2$ at the point where $f'(x) = 1$?	(A) 110 (B)	given in the t 3], what is the (C) 1	nous on the cl able above. U trapezoidal aj	osed interval [2 Ising the subint oproximation o) (E) 210	2, 8] and has tervals [2, 5] of $\int_{2}^{8} f(x) dx$?
	$f(x) = \frac{98-40}{10}$ Which of $f(x) = \frac{98-40}{10}$	f the followin $x^4 + 2x^2$ at th	g is an equation e point where	on of the line ta f'(x) = 1?	ngent to the

Packet p. 3 (Free Response Practice)

Day 5 Taylor & Maclaurin Series

How we have used power series

We found power series representations when functions or their integrals or derivatives were of form $\frac{a}{1-r}$

$$f(x) = \frac{1}{1 - 2x}$$
 $f(x) = \tan^{-1} x$

Today, our goal is the same but our method is different.

Why are we bothering?

 $\cos 0 = 1$ $\sqrt[3]{8} = 2$ $\ln 1 = 0$ $e^{1} = e$ $\cos 2 = ?$ $\sqrt[3]{2} = ?$ $\ln 2 = ?$ $e^{2} = ?$

Easily memorized and recalled

Series give us the means to approximate the value of functions

Consider
$$f(x) = \cos x$$

This is not in $\frac{a}{1-r}$ form, nor is its derivative or integral.

But finding a powers series representation is still worthwhile.

$$\cos x = \sum_{n=0}^{\infty} ?$$

Let's start with our power series template

$$f(x) = \cos x = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots + c_n x^n + \dots$$

Where is the series centered?

Our goal is to solve for all the c_s

Let x=0

$$c_0 = \cos 0 \qquad c_0 = 1$$

The result

 $\cos x = 1 + \cdots$

We have our first term!

Now, let's get creative

$$f(x) = \cos x = 1 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots + c_n x^n + \dots$$
Getting the x² terms and later to disappear:
Take the derivative of each side

$$f'(x) = -\sin x = c_1 + 2c_2 x + 3c_3 x^2 + 4c_4 x^3 + \dots + nc_n x^{n-1} + \dots$$
Let x = 0

$$-\sin 0 = c_1 \qquad c_1 = 0$$

 $\cos x = 1 + 0x + \cdots$

$$f(x) = \cos x = 1 + 0x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots + c_n x^n + \dots$$

Let's keep going

$$f'(x) = -\sin x = 0 + 2c_2 x + 3c_3 x^2 + 4c_4 x^3 + \dots + nc_n x^{n-1} + \dots$$

Take the derivative again of each side $f''(x) = -\cos x = 2c_2 + 2 \cdot 3c_3 x + 3 \cdot 4c_4 x^2 + \dots + (n-1)nc_n x^{n-2}$ Let x = 0. $-\cos 0 = 2c_2 \qquad c_2 = -\frac{1}{2}$

$$\cos x = 1 + 0x - \frac{1}{2}x^2 + \cdots$$

$$f(x) = \cos x = 1 + 0x - \frac{x^2}{2} + c_3 x^3 + c_4 x^4 + \dots + c_n x^n + \dots$$
Again
$$f''(x) = -\cos x = 2\left(-\frac{1}{2}\right) + 2 \cdot 3c_3 x + 3 \cdot 4c_4 x^2 + \dots + (n-1)nc_n x^{n-2}$$
Take the derivative again of each side
$$f'''(x) = \sin x = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 x + \dots + (n-2)(n-1)nc_n x^{n-3}$$
Let $x = 0$.
$$\sin 0 = 2 \cdot 3 \cdot c_3$$

$$c_3 = 0$$

$$f(x) = \cos x = 1 + 0x - \frac{x^2}{2} + 0x^3 + c_4 x^4 + \dots + c_n x^n + \dots$$

Yep, again

$$f'''(x) = \sin x = 0 + 2 \cdot 3 \cdot 4c_4 x + \dots + (n-2)(n-1)nc_n x^{n-3}$$

$$f^{4}(x) = \cos x = 2 \cdot 3 \cdot 4c_{4} + \dots + (n-3)(n-2)(n-1)nc_{n}x^{n-4}$$

Let $x = 0$.
$$\cos 0 = 2 \cdot 3 \cdot 4c_{4} \qquad c_{4} = \frac{1}{2 \cdot 3 \cdot 4} = \frac{1}{4!}$$

$$\cos x = 1 + 0x - \frac{x^2}{2} + 0x^3 + \frac{x^4}{4!} + \cdots$$

Continuing we would get

$$\cos x = 1 + 0x - \frac{x^2}{2} + 0x^3 + \frac{x^4}{4!} + 0x^5 - \frac{x^6}{6!} + 0x^7 + \frac{x^8}{8!} \cdots$$

What is the general pattern in terms of *n*?

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} \cdots$$

n=0 n=1 n=2 n=3 n=4

$$nth \text{ term}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} + \dots + (-1)^2 \frac{x^2}{2!} + \dots$$

$$n=0 \ n=1 \ n=2 \ n=3 \ n=4$$

$$NOTE the + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + -1^n \frac{x^{2n}}{2n!} + \dots = \sum_{n=0}^{\infty} -1^n \frac{x^{2n}}{2n!}$$

PUT THIS in YOUR NOTES

Now we can appoximate the value of f(2)=cos(2)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + -1^n \frac{x^{2n}}{2n!} + \dots = \sum_{n=0}^{\infty} -1^n \frac{x^{2n}}{2n!}$$

$$f(2) = \cos 2 = 1 - \frac{2^2}{2} + \frac{2^4}{4!} - \frac{2^6}{6!} + \dots + -1^n \frac{2^{2n}}{2n!} + \dots$$

NOTE: The more terms of the series that are used, the better the approximation.

What is the interval of convergence?

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + -1 \quad \frac{x^{2n}}{2n!} + \dots = \sum_{n=0}^{\infty} -1 \quad \frac{x^{2n}}{2n!}$$

$$\lim_{n \to \infty} \left| \frac{x^{2n+1}}{2n+1} \cdot \frac{2n!}{x^{2n}} \right| = \lim_{n \to \infty} \left| \frac{x^{2n+2}}{2n+2!} \cdot \frac{2n!}{x^{2n}} \right| = \lim_{n \to \infty} \left| x^2 \frac{1}{2n+1} \frac{1}{2n+2} \right| = 0$$

- 0 < 1 Regardless of what *x* equals
- : Series converges for all real #s

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + -1 \frac{x^{2n}}{2n!} + \dots$$
 For all real #s

And all we needed to know was how $\cos x$ behaves at x = 0.

Generalizing for a power series centered at any x=a not just 0

Power series centered at x = a.

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots + c_n(x - a)^n + \dots$$

$$f'(x) = c_1 + 2c_2(x-a) + \dots + (n)c_n(x-a)^{n-1} + \dots$$

$$f''(x) = 2c_2 + \dots + (n-1)(n)c_n(x-a)^{n-2} + \dots$$

$$f'''(x) = \dots + (n-2)(n-1)(n)c_n(x-a)^{n-3} + \dots$$
$$f^n(x) = (1)(2)\cdots(n-3)(n-2)(n-1)(n)c_n + \dots$$

$$f^n(x) = n!c_n + \cdots$$

We have a formula to determine each coefficient.

Think about what is happening

Every time we take a derivative,

The first degree term becomes just a constant.

when we let x = 0.

Definition: Taylor Series

if *f* is a function with derivatives of all orders throughout some open interval containing *a*, then:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x-a)^{n}$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

0! = 1, so the first term will always end up being f(a).

A Taylor Series centered at **a** = **0** is known as a **Maclaurin Series**.

Ex) Find the Maclaurin series for $f(x) = e^x$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x-a)^{n}$$

 $f^n(x)$ П $f^n(a) = f^n(\underline{})$ f(0) = 1 $f(x) = e^x$ 0 f'(0) = 1 $f'(x) = e^x$ 1 f''(0) = 12 $f''(x) = e^x$ f'''(0) = 1 $f'''(x) = e^x$ $f^4(x) = e^x$ 3 4 $f^4(0) = 1$

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

Let's build our series

$$e^{x} = 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$
$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Now approximate the value of f(5)

$$f(5) = e^5$$
: $e^5 = 1 + 5 + \frac{5^2}{2} + \frac{5^3}{3!} + \cdots$

NOTE: The more terms of the series that are used the better the approximation.

To find the interval of convergence,
do Ratio Test on
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| \qquad \mathbf{o}$$

$$= \lim_{n \to \infty} \left| x \frac{1}{n+1} \right| = 0 < 1$$

The series converges for all real #s and the radius of convergence is R = ∞

And we only needed to know behavior at x = 0

Another Ex) Find a power series expansion for $f(x) = \ln(x)$ centered at 1.

 $f^n(x)$ $f^n(a) = f^n(\underline{})$ П $f(x) = \ln x$ () f(1) = 0 $f'(x) = \frac{1}{x}$ f'(1) = 1f''(1) = -1 $f''(x) = -\frac{1}{r^2}$ 2 $f'''(x) = \frac{2}{x^3}$ f'''(1) = 2!3 $f^{4}(x) = -\frac{2 \cdot 3}{x^{4}} = \frac{3!}{x^{4}}$ $f^{5} x = \frac{2 \cdot 3 \cdot 4}{x^{5}} = \frac{4!}{x^{5}}$ $f^{4}(1) = -2 \cdot 3 = -3!$ 4 $f^5 1 = 2 \cdot 3 \cdot 4 = 4!$

Find the Interval of Convergence

$$\ln x - 1 = \sum -1^{n-1} \frac{x - 1^n}{n}$$

$$\lim_{n \to \infty} \left| \frac{x - 1^{n+1}}{n+1} \cdot \frac{n}{x - 1^n} \right| = \lim_{n \to \infty} \left| x - 1 \cdot \frac{n}{n+1} \right| = \left| x - 1 \right|$$

-1 < x - 1 < 1

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$
 all real #s

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + -1^n \frac{x^{2n+1}}{2n+1!} + \dots \quad \text{all real #s}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + -1^n \frac{x^{2n}}{2n!} + \dots$$
 all real #s

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots \qquad -1 < x \le 1$$

Use a Maclaurin series derived in this section to find a Maclaurin series for the following . . .

Find the Maclaurin series for
$$\frac{(1 + \cos 2x)}{2}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$
 (from previous slide)

$$\cos 2x = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} + \dots$$

$$1 + \cos 2x = 2 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} + \dots$$

$$\frac{1+\cos 2x}{2} = \frac{2}{2} - \frac{(2x)^2}{2!2} + \frac{(2x)^4}{4!2} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!2} + \dots$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 $g(x) = \frac{e^{x} - 1}{x^{2}}$

Find the 1st three terms of a series for g(x) and the nth term.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 = x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

