

Newton's $2^{\text {nd }}$ Law of Motion

- Shows the relationship between a force acting on an object, the mass of an object and the acceleration of an object.

$$
F=m a
$$

Deriving the vector equation for the position of a projectile object

$$
\begin{array}{ll}
m a=m\left(\frac{d^{2} r}{d t^{2}}\right) & \begin{array}{l}
\text { Acceleration is second } \\
\text { derivative of position }
\end{array} \\
m\left(\frac{d^{2} r}{d t^{2}}\right)=-m g \mathbf{j} & \begin{array}{l}
\text { Gravity is "accelerating" our } \\
\text { object in a downward direction }
\end{array} \\
\left(\frac{d^{2} r}{d t^{2}}\right)=-g \mathbf{j} &
\end{array}
$$

$$
\left(\frac{d^{2} r}{d t^{2}}\right)=-g \mathbf{j}
$$

Separate and integrate.

$$
\begin{aligned}
& \int d^{2} r=\int-g \mathbf{j} d t^{2} \\
& \frac{d r}{d t}=(-g t) \mathbf{j}+C
\end{aligned}
$$

Remember:

$$
\begin{array}{ll}
\frac{d r}{d t}=\vec{v}_{0} \text { at } t=0 & \vec{v}_{0}=(-g 0) \mathbf{j}+C \\
& \therefore \vec{v}_{0}=C
\end{array}
$$

$$
\frac{d r}{d t}=(-g t) \mathbf{j}+\vec{v}_{0}
$$

Separate and integrate.

$$
\begin{aligned}
& \int d r=\int(-g t) \mathbf{j}+\vec{v}_{0} d t \\
& r=\left(-\frac{1}{2} g t^{2}\right) \mathbf{j}+\vec{v}_{0} t+C
\end{aligned}
$$

Initial position: $r(0)=\vec{r}_{0}$

$$
\therefore C=\vec{r}_{0}
$$

$$
\begin{aligned}
& \mathbf{r}=\left(-\frac{1}{2} g t^{2}\right) \mathbf{j}+\bar{v}_{0} t+\vec{r}_{0} \\
& \mathbf{r}=\left(-\frac{1}{2} g t^{2}\right) \mathbf{j}+\left(\left|v_{0}\right| \cos \alpha\right) t \mathbf{i}+\left(\left|v_{0}\right| \sin \alpha\right) t \mathbf{j}+\overrightarrow{\mathbf{0}}
\end{aligned}
$$

Often more simply written as:

$$
r=\left(v_{0} \mid \cos \alpha\right) t \mathbf{i}+\left(\left(v_{0} \mid \sin \alpha\right) t-\frac{1}{2} g t^{2}\right) \mathbf{j}
$$

These should be in your notes

- Position Vector Equation:
$r=\left(x_{0}+\left(v_{0} \cos \alpha\right) t\right) \mathbf{i}+\left(y_{0}+\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}\right) \mathbf{j}$
Where $\mathrm{g}=$ gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right.$ or $\left.32 \mathrm{ft} / \mathrm{s}^{2}\right)$
- Horizontal Position:

$$
x=x_{0}+\left(v_{0} \cos \alpha\right) t
$$

- Vertical Position:
$y=\left(y_{0}+\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}\right)$

If the object is launched from a

 point $\left(x_{0}, y_{0}\right)$ instead of the origin . . .- Adjust the horizontal and vertical components

$$
r=\left(x_{0}+\left(v_{0} \cos \alpha\right) t\right) \mathbf{i}+\left(y_{0}+\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}\right) \mathbf{j}
$$

Highest point reached when. . .

- Vertical velocity component is zero

$$
\frac{d y}{d t}=v_{0} \sin \alpha-g t=0
$$

- Rate of change of vertical position is zero

The maximum height is . . .

- The vertical component of position at this t value

$$
y_{\max }=y_{0}+\left(v_{0} \sin \alpha\right)\left(t_{\text {highest }}\right)-\frac{1}{2} g\left(t_{\text {highest }}\right)^{2}
$$

WHEN does the projectile land (assuming launched from origin)

- Vertical component of position $=0$

$$
\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}=0
$$

Range (how far traveled in horizontal direction) . . .

- Horizontal Component of position at this t value

$$
R=\left(v_{0} \cos \alpha\right)\left(t_{\text {ground }}\right)
$$

At what launch angle will an object obtain its maximum range?

$$
\begin{aligned}
& R=\left(v_{0} \cos \alpha\right)\left(\frac{2 v_{0} \sin \alpha}{g}\right)=\frac{\left(v_{0}\right)^{2}}{g}(2 \cos \alpha \sin \alpha) \\
&=\frac{\left(v_{0}\right)^{2}}{g} \sin 2 \alpha \quad \begin{array}{l}
\text { Horizontal Range at the time } \\
\text { until on ground value }
\end{array} \\
& \qquad \sin 2 \alpha=1 \\
& \therefore \alpha=\frac{\pi}{4}
\end{aligned}
$$

