

Calculus BC

Unit 1 Day 4

Arrival Instructions

- Take out your HW

Rose Curves:

$$
r=a \sin (n \theta) \quad r=a \cos (n \theta)
$$

~Pick cosine if a leaf is split by the x-axis
$\sim a$: length of petal from the pole (maximum r for the function)

n

\# petals
Domain
(Period)
Even
$2 n$
[0,2 π]
Odd
n
$[0, \pi]$

Packet pg. 4, \#1

Equation: There is a leaf split by the x-axis and odd number of leaves:

$$
r(\theta \cong \operatorname{acos} 3 \theta
$$

Length of leaf is 2 :

$$
r(\theta \cong 2 \cos 3 \theta
$$

Domain (θ values required to generate entire curve without plotting back over points that are already plotted):

$$
[0, \pi]
$$

Because ODD number of leaves

Packet pg. 4, \#5

Equation: There is a leaf split by the x-axis and even number of leaves:

$$
r\left(\theta \cong \operatorname{acos}\left(\frac{4}{2} \theta\right)=\operatorname{acos}(2 \theta)\right.
$$

Length of leaf is 3:

$$
r(\theta \cong 3 \cos (2 \theta)
$$

Domain (θ values required to generate entire curve without plotting back over points that are already plotted):

$$
[0,2 \pi]
$$

Because EVEN number of leaves

You Try .. .

- Write the equation for pg. 4 \#3

Summary. . .

Write the equation for pg. 4 \#3
Recall Rose Curves: $r=a \sin (n \theta) \quad r=a \cos (n \theta)$
~Pick cosine if a leaf is split by the x-axis
$\sim a$: length of petal from the pole (maximum r for the function)

$$
\begin{array}{c|c|c}
\mathbf{n} & \text { \# petals } & \begin{array}{c}
\text { Domain } \\
\text { (Period) }
\end{array} \\
\hline \text { Even } & 2 n & {[0,2 \pi]} \\
\text { Odd } & n & {[0, \pi]}
\end{array}
$$

Limacon Curves:

$$
r=a \pm b \sin (\theta) \quad r=a \pm b \cos (\theta)
$$

y-axis symmetry-pick sine x-axis symmetry-pick cosine
\pm indicates the orientation on the axis + the orientation is on the positive axis - the orientation is on the negative axis

Type of Limacon depends on the value of $\frac{a}{b}$

$\frac{a}{b}<1$ (which means $\left.a<b\right)$ Inner Loop

$$
\frac{\mathrm{a}}{\mathrm{~b}}=1(\text { which means } \mathrm{a}=\mathrm{b}) \quad \text { Cardioid }
$$

$1<\frac{a}{b}<2$ (which means $\left.b<a<2 b\right) \quad$ Dimpled
$2 \leq \frac{a}{b}$ (which means $2 \mathrm{~b} \leq \mathrm{a}$)
Convex

Domain for all types is $[0,2 \pi]$. Writing equations:

Calculate $\frac{\max +\min }{2}$ and $\frac{\max -\min }{2}$

Packet pg. 5, \#9

Equation:

Positive x-axis oriention.
Pick $r=a+b \cos (\theta)$
Calculate

Place the values to get a cardioid

$$
\begin{aligned}
& \frac{a}{b}=1(\text { which means } a=b) \\
& r=3+3 \cos (\theta)
\end{aligned}
$$

Packet pg. 6, \#11

Equation:

Negative y-axis orientation.
Pick $r=a-b \sin (\theta)$
Calculate

Place the values to get an inner loop

$$
\frac{a}{b}<1(\text { which means } a<b)
$$

$$
r=1-2 \sin (\theta)
$$

You Try...

- Write the equation for pg. 5 \#15

HW Questions?

Calculus BC

NEW Topic
Arc Length

Self-Study

- Arc Length Handout

