Unit 3 Day 4
Wrap up of Improper Integrals

Warmup—Calculus AB Practice

1. If f(x)=sing™) then find % ).

2. Write the equation of the tangemtdito the curv
y =X+ cosx atthe point (0,1)

HW Questions?

Before we go over hw let's recap what we
did yesterday . . . ...

Fundamental Theorem of Calculus only works for integrands
that are continuous functions over closed intervals.

[71(x)dx=F (b)-F (a) [ f(x)dx=F(x)+c

Definite Integral Indefinite Integral




Yesterday we learned about improper integrals.
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Infinite Discontinuity in between upper/lower bound
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These integrals can either:
1. DIVERGE—grow and grow
or
2. CONVERGE to a particular number

HW Questions??

Improper Integrals

One more category . ..
Infinite Limit of Integration

[lo [

One of these converges, the other diverges




Example la:

J'E dx «— The function

accumulates area

1 without bouni ral DI
We take the mtegr{bi’% eg
we can't just subs nity. Can we find

Example 1b:
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- dX «— The function

1 x accumulates area 1 Es
without bound a CON \

Wetake the mtegr{hig egr 11111

we can't just subs finity.

We must approach infinity.

Can we find the area
of such a curve?

the area of

We must approach infinity. such a curve?
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and tell
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Evaluate the following or state that it diverges

¢ dx
1|l—
o

Z.J'de hint: Think inverse trig!
o1+ x?

Solutionon next slide. ©®




Example 2:

j 1 dx «— The function also /
o1+ %2 accumulates area
without bound. .
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Here is a more challenging problem to try:

1+ HINT: Rationalize the numerator.
' /7)( dx Then split the result to have
o0y1-x

two expressions.
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sin™ x—u?

This integral converges
because it approaches a
solution.
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