Warm Op

Consider the differential equation, $\frac{dy}{dx} = y$, passing through (0,1).

a) Sketch the slope field for this differential equation on the points provided.

- b) Use Euler's Method with step size 0.2 to estimate f(.6)
 c) Use separation of variables to find the particular solution to the differential equation given y(0) = 1
- d) Determine the error in the Euler approximation of f(.6) as compared to the actual value of f(.6)

ADSWEES

 a) Sketch on the slope field. Someone can come and put their answer on the board if you would like to discuss.

b) f(.6) = 1.728

c) $y = e^x$

d) $f(.6) = e^{.6} = 1.82211$ so the error is .094.

Today's POST-QUIZ Classwork...

• Problems #1-4 all require using the equation:

$$y = y_0 e^{kt}$$

- Using this equation is not really a calculus topic but a skill you learned in previous math courses like Algebra II and Precalculus
- HOWEVER, it is important to know/understand where this equation comes from. . . .

Where does $y = y_0 e^{kt}$ come from?

The statement "A quantity y (such as population, radioactive element or money) increases or decreases at a rate proportional to the present amount" is represented by this differential equation:

$$\frac{dy}{dt} = ky$$

Separate and Integrate to get $y = Ae^{kt}$, where A is an arbitrary constant.

Then if we also know the amount present at time t = 0 is y_0 the equation $y = Ae^{kt}$ would become $y = y_0e^{kt}$

Why do we care?

Because on a Calculus free response type question you would be required to show the work to derive the equation $y = y_0 e^{kt}$