Whapm ©p

Consider the differential equation, $\frac{d y}{d x}=y$, passing through $(0,1)$.
a) Sketch the slope field for this differential equation on the points provided.

b) Use Euler's Method with step size 0.2 to estimate $f(.6)$
c) Use separation of variables to find the particular solution to the differential equation given $y(0)=1$
d) Determine the error in the Euler approximation of $f(.6)$ as compared to the actual value of $f(.6)$
a) Sketch on the slope field. Someone can come and put their answer
on the board if you would like to discuss.
b) $f(.6)=1.728$
c) $y=e^{x}$
d) $f(.6)=e^{.6}=1.82211$ so the error is .094 .

Where does $y=y_{0} e^{t}$ come from?

The statement "A quantity y (such as population, radioactive element or money) increases or decreases at a rate proportional to the present amount" is represented by this differential equation:

$$
\frac{d y}{d t}=k y
$$

Separate and Integrate to get $y=A e^{k t}$, where A is an arbitrary constant.

Then if we also know the amount present at time $t=0$ is y_{0} the equation $y=A e^{k t}$ would become $y=y_{0} e^{k t}$

Why do we care?

Because on a Calculus free response type question you would be required to show the work to derive the equation $y=y_{0} e^{k t}$

