Arrival Activity—Convert the following repeating decimal to a geometric series.

$$0.25252525...$$

= 0.25 + .0025 + .000025 + .00000025...
$$a = 0.25$$

$$r = 0.01$$

0.25252525... = $\sum_{n=1}^{\infty} (0.25)(0.01)^{n-1}$

Determine what this geometric series converges to. $0.25252525... = \sum_{n=1}^{\infty} (0.25)(0.01)^{n-1}$ a = 0.25 r = 0.01 $s = \frac{a}{(1-r)} = \frac{0.25}{(1-0.01)} = \frac{25}{99}$

Test for Divergence		
$\sum_{n=1}^{\infty} \frac{n^2 + 2n}{3 - n^2}$	$\lim_{n\to\infty}\frac{n^2+2n}{3-n^2}=-1$	Series Diverges
$\sum_{n=1}^{\infty} \frac{n^2 + 2n}{n}$	$\lim_{n\to\infty}\frac{n^2+2n}{n}=\infty$	Series Diverges
$\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n}$	$\lim_{n\to\infty}\frac{n}{n^2+2n}=0$	Inconclusive
$\sum_{n=1}^{\infty} \frac{2}{n^2 + 4n + 3}$	$\lim_{n\to\infty}\frac{2}{n^2+4n+3}=0$) Inconclusive

Practice

• Now you are ready to try

Packet p. 3, #3b, #14, 15, 17, 18, 22, 23, 24

Summary So Far

- Geometric Series – Examine *r* value
- Test for Divergence – Divergent OR INCONCLUSIVE
- Next P-Series (Including Harmonic Series)

Summary So Far

- Geometric Series
 - Examine r value
- Test for Divergence
 - Divergent OR INCONCLUSIVE
- P-Series (Including Harmonic Series)
- NEXT Telescoping Test (NOT on Quiz #1)

Telescoping TestEx. P. 3 #19		
The <i>n</i> th partial sum is		
$S_n = \frac{1}{2} + \frac{1}{3} + \left(-\frac{1}{n+2}\right) + \left(-\frac{1}{n+3}\right)$		
And $\lim_{n \to \infty} S_n = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$		
So the series $\sum_{n=1}^{\infty} \frac{2}{n^2 + 4n + 3}$		
Converges to 5/6		

Example #2—NOT in your packet YOU TRY		
$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1}$		
$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} = \sum_{n=1}^{\infty} \frac{1}{2n - 1} - \sum_{n=1}^{\infty} \frac{1}{2n + 1}$		
$\sum_{n=1}^{\infty} \frac{1}{2n-1} = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2n-1}$		
$-\sum_{n=1}^{\infty} \frac{1}{2n+1} = -\frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \dots + \left(-\frac{1}{2n+1}\right)$		

Later Go Back and Try

• Packet p. 3 #16