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Arrival Activity—Convert  the following 

repeating decimal to a geometric series.

0.25 .0025 .000025 .00000025...= + + +
0.25252525...

0.25

0.01

a

r

=
=

1

1

(0.25)(0.01)n
n

∞
−

=
=∑0.25252525...

Determine what this geometric series converges to.
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Unit 5 Day 4

Test for Divergence

Telescopic Test

P-Series (Including Harmonic)

QUIZ Tomorrow

• Quiz Review—packet p. 5 & 6

– We will have some POD time tomorrow before the 

quiz but you might want to start on this tonight!

• The quiz covers:

Reducing factorials, 

Convergence/divergence of:

SEQUENCE

Geometric Series

Divergence Test—TODAY

p-Series Test—TODAY
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Test for Divergence Theorem  

If                    Does Not Exist 

OR if

OR if  

Then the series                  is divergent 
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Test for Divergence
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Practice

• Now you are ready to try 

Packet p. 3,  #3b, #14,  15, 17, 18, 22, 23, 24

Summary So Far

• Geometric Series

– Examine r value

• Test for Divergence

– Divergent OR INCONCLUSIVE

• Next . . . . P-Series (Including Harmonic Series)
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Exploring the Harmonic Series
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Harmonic Series = 1 ...
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The name “Harmonic series” comes from the world of music 
and overtones, or harmonics.  The wavelengths of the 
overtones of a vibrating string are

Source: Wikipedia.com
1 1 1

, , ...
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Determine if the harmonic series converges 

or diverges.
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Which continues to grow
So, must diverge.∑
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The Harmonic Series is an example that confirms 

the converse of the following theorem to be false!

If the series 

is convergent, 
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∑
∞

=1n
na

0lim =
∞→ n

n
a

The CONVERSE is NOT TRUE
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Retry p. 3 #15 and #27
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and divergent IF

The Harmonic Series is an example of a P-Series

A P-Series is of the form
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Summary So Far

• Geometric Series

– Examine r value

• Test for Divergence

– Divergent OR INCONCLUSIVE

• P-Series (Including Harmonic Series)

• NEXT . . . .Telescoping Test  (NOT on Quiz #1)
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Remember . . . .

If the sequence of the partial sums converges to 

some value S (                 ),

then the series converges…

AND we state that                   
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Telescoping Test…Ex. P. 3 #19
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Let’s look at partial sums: 

The nth partial sum is

And

So the series 

Converges to   5/6

Telescoping Test…Ex. P. 3 #19
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Example #2—NOT in your packet

YOU TRY

2
1

2

4 1n n

∞

= −∑

2
1 1 1

1

1

2 1 1

4 1 2 1 2 1

1 1 1 1 1
1 ...

2 1 3 5 7 2 1

1 1 1 1 1
...

2 1 3 5 7 2 1

n n n

n

n

n n n

n n

n n

∞ ∞ ∞

= = =

∞

=

∞

=

= −
− − +

= + + + + +
− −

 − = − − − + + − + + 

∑ ∑ ∑

∑

∑



4/14/2014

6

The nth partial sum is

And

So the series 

Converges to   1
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Example #2—NOT in your packet

SOLUTION
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Retry Packet p. 3   #26

1

3 5

( 3) 4n
n n n

∞

=

 + + 
∑

Later Go Back and Try  . . . . 

• Packet p. 3  #16


