

Any vector $\mathbf{v}=\langle a, b\rangle$ can be written as a linear combination of the two standard unit vectors.

Here is the proof:

$$
\mathbf{i}=\langle 1,0\rangle \quad \mathbf{j}=\langle 0,1\rangle
$$

Start with

$$
\begin{array}{rlrl}
\mathbf{v} & =\langle a, b\rangle & & \begin{array}{l}
\text { The vector } \mathbf{v} \text { is now a linear }
\end{array} \\
& =\langle a, 0\rangle+\langle 0, b\rangle & \begin{array}{l}
\text { combination of the vectors } \mathbf{i} \text { and } \mathbf{j} .
\end{array} \\
& =a\langle 1,0\rangle+b\langle 0,1\rangle & \begin{array}{l}
\text { The scalar } a \text { is the horizontal } \\
\text { component of } \mathbf{v} \text { and the scalar } b \text { is }
\end{array} \\
& =a \mathbf{i}+b \mathbf{j} & & \begin{array}{l}
\text { the vertical component of } \mathbf{v} .
\end{array}
\end{array}
$$

> Ex. Let $\mathrm{P}=(-1,5)$ and $\mathrm{Q}=(3,2)$. Write $\overline{P Q}$ as a linear combination of $\mathbf{i}+\mathbf{j}$

$$
\overrightarrow{P Q}=\langle 4,-3\rangle=4 i-3 j
$$

Understanding 2D Motion

A particle moving through a plane:
The particle's coordinates are a function of time.
Ex: $x=f(t)$ and $y=g(t)$

The set of points (x, y) make the curve in the plane that represents the particle's path.

We can describe the position of a moving particle by a vector, $r(t)$.

If we separate $r(t)$ into horizontal and vertical components, we can express $r(t)$ as a linear combination of standard unit vectors \mathbf{i} and \mathbf{j}.

SPEED vs VELOCITY

$$
\text { Speed }=|\mathbf{v}(\mathbf{t})| \quad \begin{gathered}
\text { "Speed" is magnitude of velocity. } \\
\text { Speed has no direction. } \\
\text { Velocity has direction. }
\end{gathered}
$$

Direction of motion $=\frac{\text { velocity vector }}{\text { speed }}=\frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}$
"Direction" is a unit vector that indicates direction but not magnitude.

Example: Given $r(t)$ is the position vector of a particle at time t :

$$
\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}
$$

a) Find the velocity and acceleration vectors.

$$
\begin{aligned}
& \mathbf{v}=\frac{d \mathbf{r}}{d t}=(-3 \sin t) \mathbf{i}+(3 \cos t) \mathbf{j} \\
& \mathbf{a}=\frac{d \mathbf{v}}{d t}=(-3 \cos t) \mathbf{i}-(3 \sin t) \mathbf{j}
\end{aligned}
$$

Let's explore:
$\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}_{t=\frac{\pi}{4}} \Rightarrow \quad r\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2} \mathbf{i}+\frac{3 \sqrt{2}}{2} \mathbf{j}$
$\mathbf{v}=\frac{d \mathbf{r}}{d t}=(-3 \sin t) \mathbf{i}+\left.(3 \cos t) \mathbf{j}\right|_{t=\frac{\pi}{4}} \Rightarrow \mathbf{v}\left(\frac{\pi}{4}\right)=-\frac{3 \sqrt{2}}{2} \mathbf{i}+\frac{3 \sqrt{2}}{2} \mathbf{j}$
$\mathbf{a}=\frac{d \mathbf{v}}{d t}=(-3 \cos t) \mathbf{i}-\left.(3 \sin t) \mathbf{j}\right|_{t=\frac{\pi}{4}} \Rightarrow a\left(\frac{\pi}{4}\right)=-\frac{3 \sqrt{2}}{2} \mathbf{i}-\frac{3 \sqrt{2}}{2} \mathbf{j}$

Let's explore:
$\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}_{t=\frac{\pi}{4}} \Rightarrow \quad r\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2} \mathbf{i}+\frac{3 \sqrt{2}}{2} \mathbf{j}$
$\mathbf{v}=\frac{d \mathbf{r}}{d t}=(-3 \sin t) \mathbf{i}+\left.(3 \cos t) \mathbf{j}\right|_{t=\frac{\pi}{4}} \Rightarrow \mathbf{v}\left(\frac{\pi}{4}\right)=-\frac{3 \sqrt{2}}{2} \mathbf{i}+\frac{3 \sqrt{2}}{2} \mathbf{j}$
$\mathbf{a}=\frac{d \mathbf{v}}{d t}=(-3 \cos t) \mathbf{i}-\left.(3 \sin t) \mathbf{j}\right|_{t=\frac{\pi}{4}} \Rightarrow a\left(\frac{\pi}{4}\right)=-\frac{3 \sqrt{2}}{2} \mathbf{i}-\frac{3 \sqrt{2}}{2} \mathbf{j}$

Notice
Velocity is \perp to position.
Acceleration is \perp to velocity and opposite of position.

Velocity is \perp to position.
Acceleration is \perp to velocity and opposite of position.
This is a unique property of sine and cosine.

Example: Given $r(t)$ is the position vector of a particle at time t :

$$
\mathbf{r}(t)=\left(2 t^{3}-3 t^{2}\right) \mathbf{i}+\left(t^{3}-12 t\right) \mathbf{j}
$$

a) Write the equation of the tangent where $t=-1$.

At $t=-1: \mathbf{r}(-1)=-5 \mathbf{i}+11 \mathbf{j} \quad$ slope $=\frac{d \mathbf{r}}{d t}=\left(6 t^{2}-6 t\right) \mathbf{i}+\left(3 t^{2}-12\right) \mathbf{j}$ point: $(-5,11)$

$$
\text { slope }=12 \mathbf{i}-9 \mathbf{j}
$$

tangent:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-11=-\frac{3}{4}(x+5) \quad y=-\frac{3}{4} x+\frac{29}{4}
$$

Example:

$$
\begin{aligned}
& \mathbf{r}(t)=\left(2 t^{3}-3 t^{2}\right) \mathbf{i}+\left(t^{3}-12 t\right) \mathbf{j} \\
& \mathbf{v}(t)=\frac{d \mathbf{r}}{d t}=\left(6 t^{2}-6 t\right) \mathbf{i}+\left(3 t^{2}-12\right) \mathbf{j}
\end{aligned}
$$

b) Find the coordinates of each point on the path where the horizontal COMPONENT of the velocity is 0 .

The horizontal component of the velocity is $6 t^{2}-6 t$.

$$
\begin{array}{cl}
6 t^{2}-6 t=0 & \mathbf{r}(0)=0 \mathbf{i}+0 \mathbf{j} \quad(0,0) \\
t^{2}-t=0 & \\
t(t-1)=0 & \mathbf{r}(1)=(2-3) \mathbf{i}+(1-12) \mathbf{j} \\
t=0,1 & \mathbf{r}(1)=-\mathbf{i}-11 \mathbf{j} \longrightarrow(-1,-11)
\end{array}
$$

(a) $\begin{aligned} x^{\prime}(t) & =6 e^{3 t}-7 e^{-7 t} \\ y^{\prime}(t) & =9 e^{3 t}+2 e^{-2 t} \end{aligned}$ Velocity vector is $\left\langle 6 e^{3 t}-7 e^{-7 t}, 9 e^{3 t}+2 e^{-2 t}\right\rangle$ $\begin{aligned} \text { Specd } & =\sqrt{x^{\prime}(0)^{2}+y^{\prime}(0)^{2}}=\sqrt{(-1)^{2}+11^{2}} \\ & =\sqrt{122} \end{aligned}$ b) $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{9 e^{3 t}+2 e^{-2 t}}{6 e^{3 t}-7 e^{-7 t}}$ $\lim _{t \rightarrow \infty} \frac{d y}{d x}=\lim _{t \rightarrow \infty} \frac{9 e^{3 t}+2 e^{-2 t}}{6 e^{3 t}-7 e^{-7 t}}=\frac{9}{6}=\frac{3}{2}$	$3:\left\{\begin{array}{l} 1: x^{\prime}(t) \\ 1: y^{\prime}(t) \\ 1: \text { speod } \end{array}\right.$ $2:\left\{\begin{array}{l} 1: \frac{d y}{d x} \text { in terms of } t \\ 1: \text { limit } \end{array}\right.$

c) Need $y^{\prime}(t)=0$, but $9 e^{3 t}+2 e^{-2 t}>0$ for all t, so none exists. d) Nced $x^{\prime}(t)=0$ and $y^{\prime}(t) \neq 0$. $\begin{aligned} & 6 e^{3 t}=7 e^{-7 t} \\ & e^{10 t}=\frac{7}{6} \\ & t=\frac{1}{10} \ln \left(\frac{7}{6}\right) \end{aligned}$	$2:\left\{\begin{array}{l} 1: \text { considers } y^{\prime}(t)=0 \\ 1: \text { explains why none exists } \end{array}\right.$ $2:\left\{\begin{array}{l}1: \text { considers } x^{\prime}(t)=0 \\ 1: \text { solution }\end{array}\right.$

