

Ex. Let P=(-1, 5) and Q = (3,2). Write \overline{PQ} as a linear combination of $\mathbf{i} + \mathbf{j}$

$$\overline{PQ} = \langle 4, -3 \rangle = 4i - 3j$$

Understanding 2D Motion

A particle moving through a plane:

The particle's coordinates are a function of time. Ex: x=f(t) and y=g(t)

The set of points (x,y) make the curve in the plane that represents the particle's path.

Example: $\mathbf{r}(t) = (3\cos t)\mathbf{i} + (3\sin t)\mathbf{j}$				
$\mathbf{v} = \frac{d\mathbf{r}}{dt} = (-3\sin t)\mathbf{i} + (3\cos t)\mathbf{j} \qquad \mathbf{a} = \frac{d\mathbf{v}}{dt} = (-3\cos t)\mathbf{i} - (3\sin t)\mathbf{j}$				
b) Find the velocity and acceleration $t = \pi/4$				
velocity: $\mathbf{v}\left(\frac{\pi}{4}\right) = \left(-3\sin\frac{\pi}{4}\right)\mathbf{i} + \left(3\cos\frac{\pi}{4}\right)\mathbf{j} = -\frac{3\sqrt{2}}{2}\mathbf{i} + \frac{3\sqrt{2}}{2}\mathbf{j}$				
acceleration: $\mathbf{a}\left(\frac{\pi}{4}\right) = \left(-3\cos\frac{\pi}{4}\right)\mathbf{i} - \left(3\sin\frac{\pi}{4}\right)\mathbf{j} = -\frac{3\sqrt{2}}{2}\mathbf{i} - \frac{3\sqrt{2}}{2}\mathbf{j}$				
\rightarrow				

Example:	$\mathbf{r}(t) = (3\cos t)\mathbf{i}$	$\mathbf{i} + (3\sin t)\mathbf{j}$	
$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \left(-3\mathrm{si}\right)$	$(n t)\mathbf{i} + (3\cos t)\mathbf{j}$	$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \left(-3\cos t\right)$	$\mathbf{i} - (3\sin t)\mathbf{j}$
c) Find th	ne speed and dire	ection of motion at	$t=\pi/4.$
From Part b:			
$\mathbf{v}\left(\frac{\pi}{4}\right) = -\frac{1}{2}$	$\frac{3\sqrt{2}}{2}\mathbf{i} + \frac{3\sqrt{2}}{2}\mathbf{j}$	$\mathbf{a}\left(\frac{\pi}{4}\right) = -\frac{3\sqrt{2}}{2}$	$\mathbf{i} - \frac{3\sqrt{2}}{2}\mathbf{j}$
speed: $\mathbf{v}\left(\frac{\pi}{4}\right)$	$=\sqrt{\left(-\frac{3\sqrt{2}}{2}\right)^2+\left(\frac{3\sqrt{2}}{2}\right)^2}$	$\frac{\overline{3\sqrt{2}}}{2}\Big)^2 = \sqrt{\frac{18}{4} + \frac{18}{4}} =$:3
direction: $\frac{\mathbf{v}(\pi)}{ \mathbf{v}(\pi) }$	$\left \frac{(4)}{(4)}\right = \frac{-3\sqrt{2}/2}{3}\mathbf{i}$	$+\frac{3\sqrt{2}/2}{3}\mathbf{j}=-\frac{\sqrt{2}}{2}\mathbf{i}$	$+\frac{\sqrt{2}}{2}\mathbf{j} \rightarrow \mathbf{j}$

Let's explore:

$$\mathbf{r}(t) = (3\cos t)\mathbf{i} + (3\sin t)\mathbf{j}|_{t=\frac{\pi}{4}} \Rightarrow r\left(\frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2}\mathbf{i} + \frac{3\sqrt{2}}{2}\mathbf{j}$$

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = (-3\sin t)\mathbf{i} + (3\cos t)\mathbf{j}|_{t=\frac{\pi}{4}} \Rightarrow \mathbf{v}\left(\frac{\pi}{4}\right) = -\frac{3\sqrt{2}}{2}\mathbf{i} + \frac{3\sqrt{2}}{2}\mathbf{j}$$

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = (-3\cos t)\mathbf{i} - (3\sin t)\mathbf{j}|_{t=\frac{\pi}{4}} \Rightarrow a\left(\frac{\pi}{4}\right) = -\frac{3\sqrt{2}}{2}\mathbf{i} - \frac{3\sqrt{2}}{2}\mathbf{j}$$
Notice
Velocity is \perp to position.
Acceleration is \perp to velocity and opposite of position.
 \Rightarrow

