

Objectives

- Terminology

- Sequence, series, partial sum Summation Notation
- Geometric Series
- What it is
- Convergence test
- Sum calculation

PARTIAL SUMS:

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3}
\end{aligned}
$$

In general:
$s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$

Examples:

Find the first 3 terms for the following series. Also, find s_{3}
$\sum_{k=1}^{n} 3 k$
Find the sixth term for the following series.
$\sum_{k=3}^{n}\left(1+k^{2}\right)$

Now, let's explore a converging infinite geometric series.

$$
\begin{array}{r}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots=1 \frac{1}{2}_{\frac{1}{4}}^{\frac{1}{8}} \\
\sum_{k=1}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{k-1} \\
=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots
\end{array}
$$

This series converges--approaches a limiting value of 1 .

Finding out what any convergent geometric series will approach . . . JUST Watch for now-I will tell you when to write.

$$
s_{n}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1} \text { Mult. by } \mathrm{r}
$$

$$
r s_{n}=\quad a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}+a r^{n}
$$

$$
\text { Now, subtract the } 2 \text { eq. } s_{n}-r s_{n}=a-a r^{n}
$$

$$
s_{n}(1-r)=a-a r^{\prime}
$$

$$
s_{n}=\frac{a-a r^{n}}{(1-r)}
$$

$$
s_{n}=\frac{a-a r^{n}}{(1-r)}
$$

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{a-a r^{n}}{(1-r)}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{(1-r)}
$$

Since $-1<r<1$, then as n increases w/out bound .

$$
\lim _{n \rightarrow \infty} r^{n}=0
$$

$$
s_{n}=\frac{a}{(1-r)}
$$

Now add to your notes . . .
An INFINITE geometric series such as

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\ldots
$$

Is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}
$$

If $|r| \geq 1$, the geometric series is divergent

