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Squeeze Theorem for Sequences
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EXAMPLE:  (Packet p. 2 #31) 
Determine whether the sequence converges or 
diverges.  If it converges, find the limit.
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HW Questions

Important Clarification. . .
What does diverge mean?

Diverge does not automatically mean sequence 
goes to an infinity.  

A diverging sequence could go to an infinity or it 
could be oscillating, such as with  an = sin(n).

Alternating Sequences-Signs of Terms 
Alternate + and -
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Alternating sequences don’t have to be divergent. 
The sequence could be alternating but still 
converging to the same number.
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Objectives

�Terminology
– Sequence, series, partial sum
– Summation Notation

�Geometric Series
– What it is
– Convergence test
– Sum calculation

Sequence versus Series

Sequence:
A list of terms

Series:
A SUM of terms
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Summation Notation:

This stands for the sum of ak from k = 1 to k = n
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Examples:  
Find the first 3 terms for the 
following series.  Also, find s3
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Find the sixth term for the following 
series.   

A series can converge or diverge 

If the sequence of the partial sums 
converges to some value S (               )

then the series converges

AND we state that                   
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Infinite Geometric Series 
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Each term differs by the same common ratio.
And there are an infinite number of terms

If r =1 what does the series look like?

...a a a a a+ + + + = ∞
The series diverges because it never 
approaches a limiting value.  
We have infinite number of “a’s”.  
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Now, let’s explore a converging Now, let’s explore a converging 
infinite geometric series.infinite geometric series.
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This series convergesThis series converges----approaches a limiting value of 1.approaches a limiting value of 1.
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Finding out what any convergent geometric series will 
approach  . . . .  JUST Watch for now—I will tell you 
when to write.
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Since –1 < r < 1, then as n 
increases w/out bound . . . 0

Now add to your notes . . . 
An INFINITE geometric series such as
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If  1≥r , the geometric series is divergent
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Ex:  Is the following series convergent or divergent?  If 

convergent, find its sum.
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More Practice

�Packet p. 3 #10, 12, 20, 21
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