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Unit 3 Improper Integrals

Day 3

Warmup—A step into the unknown?

1
2

1

Use your calculator to find the final answer.

Evaluate the following limit:

sin
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t dt

x→ −

∫ Brainstorm with 
your partner.   ☺

HW Questions

Volunteer to help others or put a problem on the board.

Stuck?    Ask for help!

Today’s Topic: Improper Integrals

Unit 3 Day 3
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Remember the Fundamental Theorem 
of Calculus . . . . 

( ) ( ) ( )
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But do you really remember the  
Fundamental Theorem of Calculus . . . . 

� There is something “fundamentally” wrong with 
the following:

� Discuss with your partner why this seems 
suspicious.  Consider the graph of

during your discussion.
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Suspicious answer . . . 

� An answer of -3/2 should seem incorrect since 
the integrand 1/x2 is always positive

� The issue is that the hypothesis of the 
Fundamental Theorem of Calculus requires the 
integrand to be continuous at every point on the 
interval of integration. 

� is discontinuous at x=0 which is 
within the interval [-1,2] 
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This previous example is one type of  
“Improper Integral”

� Recall, the definition of a definite integral is 

where ci  is a point in a subinterval of [a,b]

� If                   at some point in [a,b] then the

limit defining                is meaningless.
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NOTES

Improper because  the integrand is 
discontinuous at x=1, which is the upper 
bound for the integration
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The official definition

If f is continuous on the interval [a,b) and             

as               then the improper integral of f on [a,b] 
is defined to be:

( )f x → ±∞

x b−→

( ) ( )lim
b R
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Likewise . . . 

If f is continuous on the interval (a,b] and             

as               then the improper integral of f on [a,b] 
is defined to be:

( )f x → ±∞

x a+→

( ) ( )lim
b b
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=∫ ∫

For both cases . . . .

� If the limit exists (and equals some value L) 
the improper integral converges to L

� If the limit goes to infinity the improper 
integral diverges —continues to grow and 
grow
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Next Example:
(infinite discontinuity at lower bound of integration)
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The integral                  diverges.
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We must approach the discontinuity  
from inside the interval.
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Another type. (discontinuity between lower and upper bound)
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Coming Soon:
One more category . . . 

� Improper Integrals with an Infinite Limit of 
Integration


