
Remember the Fundamental Theorem of Calculus

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

But do you really remember the

 Fundamental Theorem of Calculus- There is something "fundamentally" wrong with the following:

$$
\int_{-1}^{2} \frac{1}{x^{2}} d x=\left.\frac{x^{-1}}{-1}\right|_{-1} ^{2}=-\frac{3}{2}
$$

- Discuss with your partner why this seems suspicious. Consider the graph of $f(x)=\frac{1}{x^{2}}$ during your discussion.

Suspicious answer . . .

- An answer of $-3 / 2$ should seem incorrect since the integrand $1 / x^{2}$ is always positive
- The issue is that the hypothesis of the Fundamental Theorem of Calculus requires the integrand to be continuous at every point on the interval of integration.
- $f(x)=\frac{1}{x^{2}}$ is discontinuous at $\mathrm{x}=0$ which is within the interval $[-1,2]$

This previous example is one type of "Improper Integral"

- Recall, the definition of a definite integral is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where c_{i} is a point in a subinterval of $[\mathrm{a}, \mathrm{b}]$

- If $f(x) \rightarrow \infty$ at some point in [a,b] then the limit defining $\int^{b} f(x) d x$ is meaningless.

For both cases

- If the limit exists (and equals some value L) the improper integral converges to L
- If the limit goes to infinity the improper integral diverges-continues to grow and grow

$$
\begin{aligned}
& \text { Another type. (discontinuity between lower and upper bound) } \\
& \int_{0}^{3}(x-1)^{-\frac{2}{3}} d x \\
& =\int_{0}^{1}(x-1)^{-\frac{2}{3}} d x+\int_{1}^{3}(x-1)^{-\frac{2}{3}} d x \\
& \lim _{c \rightarrow 1^{-}} \int_{0}^{c}(x-1)^{-\frac{2}{3}} d x+\lim _{c \rightarrow 1^{+}} \int_{c}^{3}(x-1)^{-\frac{2}{3}} d x \\
& \left.\lim _{c \rightarrow 1^{-}} 3(x-1)^{\frac{1}{3}}\right|_{0} ^{c}+\left.\lim _{c \rightarrow 1^{+}} 3(x-1)^{\frac{1}{3}}\right|_{c} ^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{c \rightarrow 1^{-}} \int_{0}^{c}(x-1)^{-\frac{2}{3}} d x+\lim _{c \rightarrow 1^{+}} \int_{c}^{3}(x-1)^{-\frac{2}{3}} d x \\
& \left.\lim _{c \rightarrow 1^{-}} 3(x-1)^{\frac{1}{3}}\right|_{0} ^{c}+\left.\lim _{c \rightarrow 1^{+}} 3(x-1)^{\frac{1}{3}}\right|_{c} ^{3} \\
& \lim _{c \rightarrow 1^{-}}\left[3(c-1)^{\frac{1}{3}}-3(-1)^{\frac{1}{3}}\right]+\lim _{c \rightarrow 1^{+}}\left[3 \cdot 2^{\frac{1}{3}}-3(d-1)^{\frac{1}{3}}\right] \\
& \text { This integral CONVERGES tona } \\
& 3+3 \sqrt[3]{2}
\end{aligned}
$$

Coming Soon:
 One more category ...

- Improper Integrals with an Infinite Limit of Integration

