1. Consider the differential equation $\frac{dy}{dx} = \frac{(x+y)}{4}$

A) On the axes provided, sketch the slope field of the given differential equation.

n	Xn 1	Yn	X+Y 4	歌.0.1 / /	=
0	0	4	IVA	0.1	i i
١	0.1	4.1	1.05	0.105	
. 2	0.2	4.205	>	1	
	•				

B) Let y = f(x) be the particular solution to the differential equation subject to the initial condition f(0) = 4. Use Euler's Method, starting at x=0, with a step size of 0.1, to approximate f(0.2). Show the work that leads to the answer.

1(0.2) ≈ 4.205

2. Consider the differential equation $\frac{dy}{dx} = \frac{x^2}{v}$.

n	Xn	Yn	loly/dx	dy/dx. DX	ind.	
64	v/00	Thi	1.015	£ 001) ->	TA SA	
1-111	.12	12 5	-0.01	-0.001	A PE	
2	1.2	-1.001	Y I		2	

- A) On the axes provided, sketch the slope field of the given differential equation.
- B) Let y = f(x) be the particular solution to the differential equation subject to the initial condition f(0) = -1. Use Euler's method, starting at x=0, with a step size of 0.1, to approximate f(0.2). Show the work that leads to the answer. $f(0.2) \approx -1$. ON C) Find the particular solution to the differential equation with the initial condition
- f(0) = -1.

$$\int y \, dy = \int x^2 dx$$

 $y^2/2 = x^3/3 + C$
 $y_2 = 0 + C \rightarrow C = 1/2$

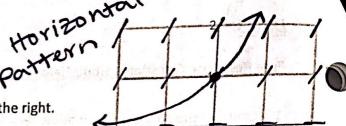
$$\frac{4^{2} = \frac{x^{3}}{3} + \frac{1}{2}}{5}$$

$$5 \quad 3y^{2} = 2x^{3} + 3$$

$$y^{2} = \frac{2x^{3} + 3}{3}$$

$$y^{2} = \frac{2x^{3} + 3}{3}$$

3. Given the differential equation $\frac{dy}{dx} = 2y$



- a. Make the slope field on the grid to the right.
- b. Draw a possible curve through (0,1).

$$\int \frac{dy}{y} = \int 2 dx \qquad |= Ae^{0}$$

$$In|y| = 2x + C \qquad A = 1$$

$$y = Ae^{2x} \qquad \boxed{y = e^{2x}}$$

c. Use Euler's method with an initial condition of (0,3) and a $\Delta x = 0.5$ to estimate the y value at x = 1.

n	Xn	Yn	dy/dx = 2y	dy/dx - AX
0	0	3	6	3 mar can
	0.5	6	12	6
2		12	to the same of the same	charottib all rabbas.

d. Use separation of variables to solve the differential equation $\frac{dy}{dx} = 2y$ with initial $\stackrel{!}{\circ}$ condition (0,3) to find the exact value at x = 1.

$$y = Ae^{2x} \leftarrow (see \pm 3b, first part)$$

$$3 = Ae^{2x}$$

$$3 = A$$

$$y(1) = 3e^{2x} \approx 22.167$$

$$y = 3e^{2x}$$

e. Is your answer from part (c) an over or underestimate? Explain.