AP Calculus BC

Unit 1 Day 2

Arrival Activity

- With a partner, discuss any issues you had with last night's homework
- AND answer the following using the same graph that was given for HW \#1-8
- What is the point that is located at $-\pi / 6$?
- QUIZ today!!!!

HW Questions

Next

- Continuation of yesterday's notes/topic

Referring to yesterday's notes, what do the

 graphs of the following look like.$$
r=-1
$$

Can you think of another equation that would result in the same graph?

$$
\theta=\frac{\pi}{3}
$$

Can you think of two other equations that would result in the same graph?

What would the graph of these pairs of

 equations look like?A. $1 \leq r \leq 2$ and $0 \leq \theta \leq \frac{\pi}{2}$
B. $-3 \leq r \leq 2$ and $\theta=\frac{\pi}{4}$

How about this pair?

$$
\text { C. } r \leq 0 \text { and } \theta=\frac{\pi}{4}
$$

AP Calculus BC

NEW MATERIAL
Polar vs Cartesian
Unit 1 Day 2

It is good to have a Cartesian coordinate system AND a Polar coordinate system because some functions are easier in Cartesian and some are easier in Polar:

$$
x^{2}-y^{2}=1
$$

$$
r=1+2 r \cos \theta
$$

$$
y^{2}-3 x^{2}-4 x-1=0
$$

$$
r=1-\cos \theta
$$

$$
x^{4}+y^{4}+2 x^{2} y^{2}+2 x^{3}+2 x y^{2}-y^{2}=0
$$

Recall from yesterday

Same point but different coordinate system . . .

Converting from polar to Cartesian:

$$
x=r \cos \theta
$$

$y=r \sin \theta$

Example:

Convert $\left(4, \frac{\pi}{6}\right)$ to Cartesian coordinates (x, y) :

Now, YOU try!!

Convert into Cartesian:

$$
\begin{array}{ll}
\text { 1) }\left(4, \frac{7 \pi}{3}\right) & \begin{array}{l}
\text { Answers: } \\
\text { 1) }(2,2 \sqrt{3})
\end{array} \\
\text { 2) }\left(-3, \frac{5 \pi}{4}\right) & \text { 2) }\left(\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right) \\
3)\left(-5, \frac{\pi}{6}\right) & \text { 3) }\left(\frac{-5 \sqrt{3}}{2},-\frac{5}{2}\right)
\end{array}
$$

Converting from Cartesian to Polar

$$
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x}
$$

Example:
Convert $(-3, \sqrt{3})$ to Polar Coordinates

Finding r :

Finding θ is more involved . . .

Finding θ. . . .

$$
r^{2}=x^{2}+y^{2}
$$

$$
\tan \theta=\frac{y}{x}
$$

Example:
Convert $(-3, \sqrt{3})$ to Polar Coordinates

Now we have to pair up the r and $\theta \ldots$

Pairing up r and θ. . .

$$
r= \pm \sqrt{12} \quad \theta=\frac{11 \pi}{6} \text { or } \theta=\frac{5 \pi}{6}
$$

The original Cartesian coordinates place the point in the $2^{\text {nd }}$ quadrant.

So

The Cartesian point $(-3, \sqrt{3})$ in Polar form is:

$$
\left(2 \sqrt{3}, \frac{5 \pi}{6}\right) \quad \text { OR } \quad\left(-2 \sqrt{3}, \frac{11 \pi}{6}\right)
$$

There are multiple conversions to polar! ©
Being in the correct location when finished with the conversion is what is important.

Up Next . . .

Converting points that would not have a θ landing on a known locations on the unit circle

Convert $(-3,-4)$ to Polar Coordinates

$$
\begin{aligned}
& r= \pm \sqrt{(-3)^{2}+(-4)^{2}}= \pm 5 \\
& \theta=\tan ^{-1}\left(\frac{-4}{-3}\right)=0.927 \quad \text { This is in the first quadrant. }
\end{aligned}
$$

To end up in the $3^{\text {rd }}$ quadrant, the location of the given point, we would need $(-5,0.927)$

The other possibility would be to add π to the angle and use the positive value of $r \cdot(5,0.927+\pi)$

Practice:

Convert into Polar Coordinates

1) $(1, \sqrt{3})$

Answers:
(at least one of them)
2) $(1,-1)$

1) $\left(2, \frac{\pi}{3}\right)$
2) $(\sqrt{2},-\sqrt{2})$
3) $\left(\sqrt{2},-\frac{\pi}{4}\right)$
4) $\left(2, \frac{7 \pi}{4}\right)$

Recap
 (r, θ) (x, y)

\boldsymbol{x}
$\cos \theta=\frac{x}{r} \Leftrightarrow x=r \cos \theta$
$\sin \theta=\frac{y}{r} \Leftrightarrow y=r \sin \theta$

Converting EQUATIONS from Polar to Cartesian

1. $r=-3 \sec \theta$

Confirm your answer by graphing the original polar equation to see that it is a vertical line at $x=-3$

2.
 $\sin \theta-2 \cos \theta$

Confirm your answer by graphing the original polar equation to see that it is a line equivalent to $y=5+2 x$

QUIZ--Unit Circle BC Style

- AFTER quiz start on HW
- Textbook pg. 738
$(1,3,5,11,13,15,27,31,33,37,41$, and 45$)$

