Unit 2 Parametrics
Day 2-Vectors in a Plane

WARMUP

1. Find the equation of the line tangent to the curve at the given value of t.

$$
x=5 \cos t \quad y=3 \sin t \quad \text { at } t=\frac{\pi}{4}
$$

2. Determine $\frac{d^{2} y}{d x^{2}}$ of the following curve when $t=1$.

$$
x=t^{2}-3 t \quad y=t^{3}
$$

3. Find the length of the curve from problem $\# 2$ when $-1 \leq t \leq 2$.

HW Questions?

A vector in a plane is represented by a directed line segment. Textbooks use lowercase, boldface letters.

Equal vectors have the same length and direction (same magnitude and slope).

A vector is in standard position if the initial point is at the origin.

The component form of this vector is: $\quad \mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$
The magnitude (length) of $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is:

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

OTHER important terms
\qquad If $\|\mathbf{v}\|=1$ then \mathbf{v} is a unit vector.
$\langle 0,0\rangle$ is the zero vector and has no direction.

Think about it.

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{d y}{d x}$

$$
\text { Vector }=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle=\langle d x, d y\rangle
$$

To ensure direction and magnitude are preserved:

- Do not reduce or cancel signs in slope calculation
- It's terminal - initial in slope calculation.

		Find the slope and component form of the vector.

Example Problem

Find the unit vectors that are tangent and normal to the following parametrized curve at the point where $\mathrm{t}=4$.
$x=\frac{t}{2}+1, \quad y=\sqrt{t}+1, \quad t \geq 0$

Vector Operations:

Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle, \mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle, k$ is a scalar (real number).

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\left\langle u_{1}, u_{2}\right\rangle+\left\langle v_{1}, v_{2}\right\rangle=\left\langle u_{1}+v_{1}, u_{2}+v_{2}\right\rangle \\
\text { (Add the components.) }
\end{gathered}
$$

Example Problem

Let $\mathbf{u}=\langle-1,3\rangle$ and $\mathbf{v}=\langle 4,7\rangle$.
Find the (a) component form and (b) magnitude of the the following:
$2 \mathbf{u}+3 \mathbf{v}$

