Unit 2 Parametrics Day 2—Vectors in a Plane

WARMUP

1. Find the equation of the line tangent to the curve at the given value of *t*.

 $x = 5\cos t$ $y = 3\sin t$ $at t = \frac{\pi}{4}$

2. Determine $\frac{d^2y}{dx^2}$ of the following curve when *t*=1.

3. Find the length of the curve from problem #2 when $-1 \le t \le 2$.

Example Problem

Find the unit vectors that are tangent and normal to the following parametrized curve at the point where t=4.

$$x = \frac{t}{2} + 1$$
, $y = \sqrt{t} + 1$, $t \ge 0$

Vector Operations:

Let $\mathbf{u} = \langle u_1, u_2 \rangle$, $\mathbf{v} = \langle v_1, v_2 \rangle$, *k* is a scalar (real number). $\mathbf{u} + \mathbf{v} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$

(Add the components.)

Example Problem

.

Let $\mathbf{u} = \langle -1, 3 \rangle$ and $\mathbf{v} = \langle 4, 7 \rangle$

Find the (a) component form and (b) magnitude of the the following:

 $2\mathbf{u} + 3\mathbf{v}$