WARMUP:

A railroad track and a road cross at right angles. An observer stands on the road 70 meters south of the crossing and watches an eastbound train that is traveling at 60 meters per second. At what rate is the distance from the observer to the train changing when 4 seconds have passed since the train went through the intersection?
A) 57.60 B) 57.88
C) 59.20
D) 60.00
E) 67.40

If $y=2 x-8$, what is the minimum value of the product of $x y$?
A) -16
B) -8
C)
$\begin{array}{ll}-4 & \text { D) } 0\end{array}$
E) 2

WARMUP:

A railroad track and a road cross at right angles. An observer stands on the road 70 meters south of the crossing and watches an eastbound train that is traveling at 60 meters per second. At what rate is the distance from the observer to the train changing when 4 seconds have passed since the train went through the intersection?
(A) 57.60
B) 57.88
C) 59.20
D) 60.00
E) 67.40

If $y=2 x-8$, what is the minimum value of the product of $x y$?
A) -16 \qquad
C) -4
D) 0
E) 2

3 Pillars of Calculus $A B / B C$

Sequences are generated by formulas:

Recursive - The value of an element is a function of the value of the previous element

$$
a_{n}=f\left(a_{n-1}\right) \text { or } a_{n+1}=f\left(a_{n}\right)
$$

Explicit - The value of an element is a function of the position of the element in the sequence.

$$
a_{n}=f(n)
$$

Packetp. 2 \#11-14
Find a formula for the general term a_{n} of the following sequence, assuming the pattern of the first few terms continues
12. $\left\{-\frac{1}{4}, \frac{2}{9},-\frac{3}{16}, \frac{4}{25}, \ldots.\right\}$

Packetp. 2 \#11-14
Find a formula for the general term a_{n} of the following sequence, assuming the pattern of the first
few terms continues
13.

Use $a_{n}=a_{1}(r)^{n-1}$, where r is the common ratio between terms

Packet p. 2 \#11-14

Find a formula for the general term a_{n} of the following sequence, assuming the pattern of the first few terms continues
11. $\{2,7,12,17, \ldots$.

Use $a_{n}=a_{1}+(n-1) d$, where d is the common difference between terms

Terminology Continued:

A sequence is bounded above if:

$$
a_{n}<U \quad \forall n
$$

No term is larger than U
Or below if:

$$
a_{n}>L \forall n
$$

No term is smaller than L

Relationship between Sequence and Function:

If $f(n)=a_{n}$ when n is an integer
and $\lim _{x \rightarrow \infty} f(x)=L$,
then $\lim _{n \rightarrow \infty} a_{n}=L$.

In other words,
If there is a function that defines the sequence and that function has a limit, then the limit of the function is also the limit of the sequence.

Squeeze Theorem for Sequences

$$
\begin{aligned}
& \text { If } a_{n} \leq b_{n} \leq c_{n} \text { for } n \geq n_{0} \\
& \qquad \begin{array}{l}
\text { and } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \\
\text { then } \lim _{n \rightarrow \infty} b_{n}=L
\end{array}
\end{aligned}
$$

EXAMPLE: Packet p. 2 \#31 Determine whether the sequence converges or diverges. If it converges, find the limit.

$$
\text { 31. } a_{n}=\frac{\cos ^{2} n}{2^{n}}
$$

A Story

A frog jumps into a pot of boiling water. It jumps out because its hot.

Another frog jumps in a pot of cool water. The water temperature is slowly raised to boiling. The frog boils because it doesn't realize the water is getting too hot.

A Modern Telling

A Calculus student thinks what we cover each day is easy and decides not to do the homework.

On test day, the student looks at the first question and realizes he is now hopelessly lost and overwhelmed.

Moral: You need to keep up with the homework! If you don't, you will become overwhelmed without even realizing it. Don't become the boiled frog!

