WARMUP

16. If the line tangent to the graph of the function f at the point $(1,7)$ passes through the point $(-2,-2)$, then $f^{\prime}(1)=$
(A) -5
(B) 1
(C) 3
(D) 7
(E) undefined
17. Let f be the function given by $f(x)=2 x e^{x}$. The graph of f is concave down when :
(A) $\mathrm{x}<-2$
(B) $\mathrm{x}>2$
(C) $\mathrm{x}<-1$
(D) $\mathrm{x}>-1$
(E) $\mathbf{x}<0$

WARMUP—Start New Answer Sheet

16. If the line tangent to the graph of the function f at the point $(1,7)$ passes through the point $(-2,-2)$, then $f^{\prime}(1)=$
(A) $\mathbf{- 5}$
(B) 1
(C) 3
(D) 7
(E) undefined
17. Let f be the function given by $f(x)=2 x e^{x}$. The graph of f is concave down when :
(A) $x<-2$
(B) $x>2$
(C) $\mathrm{x}<-1$
(D) $\mathrm{x}>-1$
(E) $\mathrm{x}<0$

HW Questions?

AP Calculus BC

Euler's Method
 Something New!

Please take notes.
-

Background Info

Tangent lines approximate values on a curve.

- The closer to the point of tangency, the better the approx.

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \quad x-x_{0}
$$

is the equation of the tangent line to the curve defined by $f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$

- Also, referred to as the "linearization" of the curve

Basis of Euler's Method

Patching together a string of small linearizations to approximate the curve over a larger stretch

Patching together a string of small linearizations

Given $\frac{d y}{d x}=f^{\prime}(x, y)$ and $y\left(x_{0}\right)=y_{0}$
(i.e. A differential equation with the condition that (x_{0}, y_{0}) is on the curve defined by $f(x, y)$. This differential equation is the slope of the curve and depends upon x and y.)

Euler’s ("Oiler’s") Method

- Used to approximate a specific solution to a differential equation

This is especially useful if the differential equation can not be separated and integrated

- Approximation is based on past events

What Euler's did . . .

- Used the point slope equation of a line to approximate future y-value based on previous y-value

Slope at previous point

Future y-value

$$
\begin{aligned}
& y_{n} \approx y_{n-1}+f^{\prime}\left(x_{n-1},\right. \\
& \text { Previous y-value }
\end{aligned}
$$

Step size

Example Problem:

Use Euler's Method to Approximate $f(0.2)$ given the following:

$$
\frac{d y}{d x}=f^{\prime}(x, y)=x+y ; \quad y(0)=1 ; \quad \Delta x=0.1
$$

$$
y_{n} \approx y_{n-1}+f^{\prime}\left(x_{n-1}, y_{n-1}\right) \Delta x
$$

$$
\frac{d y}{d x}=f^{\prime}(x, y)=x+y ; \quad y(0)=1 ; \quad \Delta x=0.1 \quad f(0.2)=?
$$

$$
y_{n} \approx y_{n-1}+f^{\prime}\left(x_{n-1}, y_{n-1}\right) \Delta x
$$

Use Euler's Method with step size $\Delta x=1 / 4$ to estimate $y(3 / 4)$ in the initial value problem $d y / d x=y$ with initial condition $\mathrm{y}(0)=1$.

