

Unit 6 Day 2
Representations of Functions as Power Series

## Warmup

1. SETUP the integral that could be used to find the length of a curve determined by

$$
x(t)=3 t \text { and } y(t)=2 t^{2} \text { from } t=0 \text { to } t=9
$$

2. The position of a particle moving in the xy-plane can be represented by the position vector


Find the velocity vector at time $t=3$.


## Today:

## Representing functions as a power series.

Why would we want to express a function as a sum of infinitely many terms?

Because it helps when integrating or taking the derivatives of tricky functions
(We will do this tomorrow!)


## Practice Problems-Whiteboards or Notes (you decide)

Find the function of $x$ represented by the following series and state the interval of convergence:

1. $\sum_{n=0}^{\infty} 2^{n} x^{n}$


## Now look at this in reverse...

- Given the function, $f(x)=\frac{1}{1-x}$

You may represent the function as a power series $\ldots \frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \quad=\sum_{n=0}^{\infty} x^{n}$

■What would be the interval of convergence? (In other words, when is the above equation true?)

$$
|x|<1
$$

Now graph the following partial sums
$f(x)=\frac{1}{1-x}$

$$
\begin{gathered}
S_{2}=1+x \\
S_{3}=1+x+x^{2} \\
S_{4}=1+x+x^{2}+x^{3}
\end{gathered}
$$



## Express $f(x)=\frac{1}{1+x^{2}}$ as a power series and

find the interval of convergence.

$$
f(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}
$$

Replace $x$ by $-x^{2}$ in the following equation:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots=\frac{1}{1-x} \\
& \frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1-x^{2}+x^{4}-\ldots
\end{aligned}
$$

Use your calculator to graph the function:

$$
f(x)=\frac{1}{1-x}
$$

## Observations:

- A function and series Gehave afmost the same on the INTER VAL $\mathcal{I}$ OF CONVERGENCE!!!
- Each partial sum is an approximation of $f(x)$
- The more terms that are included in the partial sum the Getter the approximation

$$
\begin{aligned}
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1-x^{2}+x^{4}-\ldots \\
\begin{array}{l}
a-1 \\
r--x^{2}
\end{array} \\
=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
\end{aligned}
$$

Geometric series, which converges when
$\left|-x^{2}\right|<1 \Rightarrow-1<x^{2}<1 \quad \begin{aligned} & \text { Interval of convergence: } \\ & (-1,1)\end{aligned}$

## What about the endpoints?

## Interval of convergence : $(-1,1)$

The geometric sum formula, $\frac{a}{1-r}$, is not valid for $r=1$.
Therefore, we cannot assume it works for these endpoints.
You can try testing the endpoints, but you should see divergence

Bottom line: we exclude the endpoints for these intervals

Let's look at the graph...

$$
\begin{gathered}
f(x)=\frac{1}{1+x^{2}} \\
S_{2}=1-x^{2} \\
S_{3}=1-x^{2}+x^{4} \\
S_{4}=1-x^{2}+x^{4}-x^{6}
\end{gathered}
$$

Write $f(x)=\frac{1}{2+x}$ as a power series:
First manipulate the expression to get it in "standard" form:

$$
\frac{1}{2+x}=\frac{\frac{1}{2}}{1+\left(\frac{x}{2}\right)}=\left[\frac{\frac{1}{2}}{1-\left(-\frac{x}{2}\right)}\right]
$$

Write $f(x)=\frac{1}{2+x}$ as a power series:


$$
\frac{1}{2+x}=\sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{2} \frac{(-1)^{n} x^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}
$$

Write $f(x)=\frac{1}{2+x}$ as a power series: $\left[\frac{\frac{1}{2}}{1-\left(-\frac{x}{2}\right)}\right]$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}
$$

$\left|-\frac{x}{2}\right|<1$
$-2<x<2$

$$
\begin{aligned}
& \text { Find a power series representation of } f(x)=\frac{x^{3}}{2+x} \\
& \qquad \frac{x^{3}}{2+x}=\frac{\frac{x^{3}}{2}}{1-\left(-\frac{x}{2}\right)} \quad \boldsymbol{a}=\frac{\boldsymbol{x}^{3}}{2} \\
& \boldsymbol{r}=-\frac{\boldsymbol{x}}{2} \\
& \sum_{n=0}^{\infty} \frac{x^{3}}{2}\left(-\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{x^{3}}{2} \frac{(-1)^{n} x^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+3}}{2^{n+1}}=\sum_{n=3}^{\infty} \frac{(-1)^{n-3}}{2^{n-2}} x^{n}
\end{aligned}
$$

Converges when $|r|<1$
$\left|-\frac{x}{2}\right|<1$

Interval of
Convergence is $(-2,2)$

## A second method

$$
\frac{x^{3}}{2+x}=x^{3}\left(\frac{1}{2+x}\right)
$$

We arready determined that $\frac{1}{2+x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$

So $x^{3}\left(\frac{1}{2+x}\right)=x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{3} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n+3}
$$

## Rules for simplification

- Pull out ( -1 ) if alternating series
- Combine common bases into single exponential
- Separate coefficient part from variable
- Adjust exponents and series bound to get $x^{n}$
- Adjust ( -1 ) exponent to get $n-1, n$, or $n+1$

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{3}}{2}\left(-\frac{x}{2}\right)^{n} \longrightarrow=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n+3} \longrightarrow & =\sum_{n=3}^{\infty} \frac{(-1)^{n-3}}{2^{n-2}} x^{n} \\
& =\sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{2^{n-2}} x^{n}
\end{aligned}
$$

## How do you know if your

 summation is correct?$$
1-x^{2}+x^{4}-\cdots \stackrel{?}{=} \sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

Expand out the first few terms of your series and verify you get the same list of terms.

$$
\begin{array}{lll}
n=0 & n=1 & n=2 \\
(-1)^{0} x^{2(0)} & (-1)^{1} x^{2(1)} & (-1)^{2} x^{2(2)} \\
=1 \cdot 1 & =-1 \cdot x^{2} & =1 \cdot x^{4} \\
=1 & =-x^{2} & =x^{4}
\end{array}
$$

Whiteboard Practice:
Find a power series to represent the given function and identify the interval of convergence

1. $f(x)=\frac{1}{1+3 x}$
2. $f(x)=\frac{x}{1-2 x}$
3. $f(x)=\frac{3}{1-x^{3}}$
