

Today:

Representing functions as a power series.

Why would we want to express a function as a sum of infinitely many terms?

Because it helps when integrating or taking the derivatives of tricky functions

(We will do this tomorrow!)

Practice Problems—Whiteboards or Notes (you decide)

Find the function of x represented by the following series and state the interval of convergence:

2.
$$\sum_{n=0}^{\infty} (-1)^n (x+1)^n$$

Practice Problems—Whiteboards or Notes (you decide)

Find the function of x represented by the following series and state the interval of convergence:

3.
$$\sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n (x-3)^n$$

Now look at this in reverse...
• Given the function,
$$f(x) = \frac{1}{1-x}$$

You may represent the function as a power
series ... $\frac{1}{1-x} = 1 + x + x^2 + x^3 + ... = \sum_{n=0}^{\infty} x^n$
• What would be the interval of convergence?
(In other words, when is the above equation
true?) $|x| < 1$

Express
$$f(x) = \frac{1}{1+x^2}$$
 as a power series and
find the interval of convergence.
 $f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$
Replace x by $-x^2$ in the following equation:
 $\sum_{n=0}^{\infty} x^n = 1+x+x^2+\dots+x^n+\dots=\frac{1}{1-x}$
 $\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = 1-x^2+x^4-\dots$

How do you know if your		
summation is correct?		
$1 - x^{2} + x^{4} - \dots = \sum_{n=0}^{\infty} (-1)^{n} x^{2n}$		
Expand out the first few terms of your series and verify you get the same list of terms.		
n = 0	n = 1	n = 2
$(-1)^0 x^{2(0)}$	$(-1)^{1} x^{2(1)}$	$(-1)^2 x^{2(2)}$
=1.1	$= -1 \cdot x^2$	$=1 \cdot x^4$
=1	$=-x^2$	$= x^4$

Whiteboard Practice:

Find a power series to represent the given function and identify the interval of convergence

$$1. f(x) = \frac{1}{1+3x}$$
$$2. f(x) = \frac{x}{1-2x}$$
$$3. f(x) = \frac{3}{1-x^3}$$