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BC Calculus

Unit 6 Day 2
Representations of Functions 
as Power Series

Warmup 

1.  SETUP the integral that could be used to find the 
length of a curve determined by

2.  The position of a particle moving in the xy-plane 
can be represented by the position vector

Find the velocity vector at time t=3.
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Take out your HW.

Warmup--Answers 
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HW Questions??

BC Calculus

Unit 6 Day 2
Representations of Functions 
as Power Series

Today: 
Representing functions as a  power series.

Why would we want to express a function as a 
sum of infinitely many terms?

Because it helps when integrating or taking the 
derivatives of tricky functions

(We will do this tomorrow!)
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This power series looks like a
Geometric Series, with a = ___  

r = ____
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Let’s explore . . . 

A “variable” r
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This series converges if . . . . 1x <

This means . . . 
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If then

1 1x or x≤ − ≥If      

t h e n  t h e  s e r i e s and function diverge away

from each other and there is no relationship

The series and the 
function are the same for 
this interval of x values.

Practice Problems—Whiteboards or Notes 
(you decide)

Find the function of x represented by the following 
series and state the interval of convergence:
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Practice Problems—Whiteboards or Notes 
(you decide)

Find the function of x represented by the following 
series and state the interval of convergence:
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Practice Problems—Whiteboards or Notes 
(you decide)

Find the function of x represented by the following 
series and state the interval of convergence:
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Now look at this in reverse…

� Given the function,
1
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You may represent the function as a power
series …

�What would be the interval of convergence? 
(In other words, when is the above equation 
true?)
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Use your calculator to graph the function:
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Now graph the following partial sums
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3 1S x x= + +
2 3

4 1S x x x= + + +

Notice:  Interval of Convergence:  (-1, 1)

Observations:

� A function and series behave almost the 
same on the INTERVAL OF 
CONVERGENCE!!!

� Each partial sum is an approximation 
of f(x)

� The more terms that are included in the 
partial sum the better the 
approximation

Express                     as a power series and

find the interval of convergence.
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Geometric series, which converges when
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What about the endpoints?

: ( 1, 1)Interval of convergence −

The geometric sum formula,             , is not valid for r = 1.

Therefore, we cannot assume it works for these endpoints.

You can try testing the endpoints, but you should see 
divergence

Bottom line: we exclude the endpoints for these intervals
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Let’s look at the graph…
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Notice:  Interval of Convergence:  (-1, 1)
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Write              as a power series:

First manipulate the expression to get it in 
“standard” form: 
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Write              as a power series:
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Interval of Convergence is (-2,2)
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Interval of Convergence:  (-2, 2)
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Find a power series representation of
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Interval of 
Convergence is (-2,2)
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Rules for simplification
• Pull out (-1) if alternating series

• Combine common bases into single exponential

• Separate coefficient part from variable

• Adjust exponents and series bound to get xn

• Adjust (-1) exponent to get n-1, n, or n+1
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How do you know if your 
summation is correct?

?
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Expand out the first few terms of your series and 
verify you get the same list of terms.
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Whiteboard Practice:

Find a power series to represent the given function and 
identify the interval of convergence
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