Warmup

NO CALCULATORS

Convert into radians or degrees.
a) 45°
b) $\frac{7 \pi}{6}$
c) $\quad-210^{\circ}$

Find the exact value of:
a) $\quad \cos \left(30^{\circ}\right)$
b) $\sin \left(\frac{4 \pi}{3}\right)$
c) $\quad \cot \left(300^{\circ}\right)$

Nice job. Now try these . . .

Solve for θ.

$$
\theta=\sin ^{-1}\left(\frac{1}{2}\right)
$$

$\theta=\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
$\theta=\tan ^{-1} 1$

Problems in this column return ONE answer because asking for output of inverse trig FUNCTION

Solve for θ, where $0 \leq \theta \leq 2 \pi$
$\sin \theta=\frac{1}{2}$
$\cos \theta=\frac{\sqrt{2}}{2}$
$\tan \theta=1$

Problems in this column return MORE THAN ONE answer because asking what angle rotation would result in the given trig values.

Calculus BC

Unit 1 Day 1
Polar Coordinates
An alternative way to plot points!

The Polar Express

First we start with the POLE or ORIGIN
Then we extend a ray to the right. This is called the POLAR AXIS

Getting to the point...

The location of a point " P " is specified by:

1. Angle measure relative to the polar axis: $\boldsymbol{\theta}$ 2. AND distance from the pole: r

Compare

Cartesian

(x,y)
$x=$ how far to go left or right
$y=$ how far to go up or down.
$\theta=$ the angle the radius makes with the polar axis

Cartesian vs Polar

- Cartesian Coordinate System
- A point is named by a unique ordered pair (x,y)
- Polar Coordinate System
- A point can be named by many different ordered pairs (r, θ)
- Polar points are NOT unique!

Let's explore . . .

r, θ

$\left(5, \frac{9 \pi}{4}\right)$
$r, \theta+2 \pi n$

$\left(-5, \frac{5 \pi}{4}\right)$
$-r, \theta \pm \pi$
$-r, \theta+\pi+2 \pi n$

Together let's plot the following polar points.

 Plot AND label all 4 points on the same grid. (Use the grids on Packet p.1)$$
\begin{aligned}
& A 2, \pi \\
& B\left(-3, \frac{\pi}{2}\right) \\
& C\left(1, \frac{-\pi}{6}\right) \\
& D\left(-3, \frac{5 \pi}{6}\right)
\end{aligned}
$$

Together let's plot the following polar points.

 Plot AND label all 4 points on the same grid. (Use the grids on Packet p.1)$$
\begin{aligned}
& E\left(2, \frac{2 \pi}{3}\right) \\
& F\left(-1, \frac{\pi}{4}\right) \\
& G\left(-2, \frac{5 \pi}{4}\right) \\
& H-3,0
\end{aligned}
$$

Cartesian Coordinates

Single variable equations are special cases

Horizontal line

Vertical line

With Polar Coordinates

What happens when either r or θ is a constant?

$$
\mathrm{r}=\mathrm{a}
$$

Regardless of Angle of Rotation (θ) the Distance From the Pole (r) is constant
$\theta=\mathrm{b}$

Plotting a Polar Equation using a Table of Values

$\mathrm{r}=8 \sin \theta$

θ	r
$\left.\begin{array}{c}\text { Hint: } \\ 4 \\ 4 \\ 3 \\ \\ \approx\end{array}\right) .93$	

Example of a Polar Equation

$\mathrm{r}=8 \sin \theta$

θ	r
0	0
$\pi / 6$	4
$\pi / 3$	6.93
$\pi / 2$	8
$2 \pi / 3$	6.93
$5 \pi / 6$	4
π	0

Now continue on to 2π

$\mathrm{r}=8 \sin \theta$

θ	r
π	0
$7 \pi / 6$	
$4 \pi / 3$	
$3 \pi / 2$	
$5 \pi / 3$	
$11 \pi / 6$	
2π	

Looking at our two sets of data points . . .

 $\mathrm{r}=8 \sin \theta$| θ | r | θ | r |
| :---: | :---: | :---: | :---: |
| 0 | 0 | π | 0 |
| $\pi / 6$ | 4 | $7 \pi / 6$ | -4 |
| $\pi / 3$ | 6.93 | $4 \pi / 3$ | -6.928 |
| $\pi / 2$ | 8 | $3 \pi / 2$ | -8 |
| $2 \pi / 3$ | 6.93 | $5 \pi / 3$ | -6.928 |
| $5 \pi / 6$ | 4 | $11 \pi / 6$ | -4 |
| π | 0 | 2π | 0 |

\therefore The second set of plotted points are ${ }_{4}$ NOT new points!
Why do you think this happens?
$r, \theta=-r, \theta+\pi$

Let's explore the next problems using the calculator . . .

- Polar Mode
- $2^{\text {nd }}$ Format PolarGC
- For this problem set the window:
- θ min $=0, \theta \max =2 \pi, \theta$ step $=\pi / 12$
- $\mathrm{xmin}=-2, \mathrm{xmax}=3, \mathrm{xscl}=1$
- $\mathrm{ymin}=-2, \mathrm{ymax}=2, \mathrm{yscl}=1$

Now for the equation . . .

$r(\theta)=1+\cos \theta$

When do the points start repeating?

One more . .

$r=\sin 3 \theta$

To smooth out the curve make the θ step smaller. θ step $=0.1$

When do the points start repeating?

Last One . . .

$r=2-\sin \theta$
Adjust your window to get the graph to fit.

When do the points start repeating?

