

More NEW Vocabulary

RADIUS OF CONVERGENCE (R):

Distance from the center of interval of convergence to the endpoint

Furthermore
The coefficients of each term can be different
and the starting *n* value can be 0...

$$f(x) = \sum_{n=0}^{\infty} C_n x^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + ... + C_{n-1} x^{n-1} + C_n x^n ...$$
This is called a **POWER SERIES**

Power Series Notes . . . A power series is a type of geometric series, where each term is obtained by multiplying by a variable or variable phrase. A power series "CENTERED at 0" would look like: $f(x) = \sum_{n=0}^{\infty} C_n x^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + ... + C_{n-1} x^{n-1} + C_n x^n ...$ A power series "CENTERED at x=a" would look like: $f(x) = \sum_{n=0}^{\infty} C_n (x-a)^n = C_0 + C_1 (x-a) + ... + C_n (x-a)^n ...$

Which of the following are power series?
If yes, identify:
1. What defines the coefficients
2. What is the variable or variable phrase

$$1.\sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}$$
 $2.\sum_{n=2}^{\infty} \frac{x^n}{2\ln n}$
 $3.\sum_{n=0}^{\infty} \frac{3^n}{2^{2n}}$ $4.1-x^2+x^4-x^6+...$

Use the Ratio Test to Determine
Power Series Convergence
RATIO TEST: Given
$$\sum_{n=0}^{\infty} b_n$$

if $\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| < 1$ then $\sum_{n=0}^{\infty} b_n$ Converges
if $\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| > 1$ then $\sum_{n=0}^{\infty} b_n$ Diverges
if $\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = 1$ Inconclusive

