Calculus Project
 Overview

Closing Thoughts

- Be thorough
- Be neat
- Be creative
- Be on time
- Be worthy of the grade you want
- You DON'T have to spend a bunch of \$\$\$ on supplies to have a quality project.

Details are on Handout READ it!!!

Comic Samples

Lincolvis

I'11 take the first derivative of them for a velocity of $x^{1}=9 t^{2}+8 t$ and $y^{\prime}=54 t^{2}+12-32 t \ldots$ Then, the second derivative of that for the acceleration would be $x^{\prime \prime}=18 t+8$ and $y^{\prime \prime}=108 t-32$.
So, with all that figured out, I should pull my parachute when $t=$

What not to do

"Wanna see my tan lines?"

Cute
 But text not legible

Calculus?
Or Precalculus

Ancyahhate \& fuless

Art Samples

Taylor Series written over and over! NICE but was on flimsy board so did not hold up.

Very effective

Clearly indicates the topic of rotated solid without the use of equations ON the art.

Very effective

Use of symmetry to find area bounded by polar curve

With a math hint:
Integration symbol

Good job
Would have been PERFECT if

The math equations had been left off but addressed in the writeup.

Nice idea
But a bit science project like

And without the math equations a viewer does not really know what is being demonstated.

What not to do

Poor construction
Did not clearly communicate

No food projects!

BE ORIGINAL!!!
 DON'T JUST COPY FROM THE INTERNET!

You would be violating the honor code
Don't forget the denominator!

$$
h^{\prime}(x)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}
$$

http://www.lostartoriginals.c m/Classes/FT_Calculus.jpg

The Quotient Rule
http://blogs.edweek.org/edweek/eduwonkette/up load/2008/07/DefeatTheSunwithCalculus-full.jpg

Learns Calculus
THADREY

