

BC Calculus Review

12

Final Math Jeopardy Jeopardy Taylor/ AB Convergence Easy Maclaurin Polar Parametrid **Tests Obscurities AB** Stuff **Series** <u>\$100</u> <u>\$100</u> <u>\$100</u> <u>\$100</u> <u>\$100</u> <u>\$100</u> <u>\$200</u> <u>\$200</u> <u>\$200</u> <u>\$200</u> <u>\$200</u> <u>\$200</u> <u>\$300</u> <u>\$300</u> <u>\$300</u> <u>\$300</u> <u>\$300</u> <u>\$300</u> <u>\$400</u> <u>\$400</u> <u>\$400</u> <u>\$400</u> <u>\$400</u> <u>\$400</u> <u>\$500</u> <u>\$500</u> <u>\$500</u> <u>\$500</u> <u>\$500</u> <u>\$500</u>

Cat1Help

Text Object.

Cat2Help

Text Object.

Cat3Help

Text Object.

Cat4Help

Text Object.

Cat5Help

Text Object.

Cat6Help

Text Object.


```
Perform the ratio test to
decide whether...
\sum_{n=1}^{\infty} \frac{2 \bullet 4 \bullet 6 \bullet \dots (2n)}{n!}
n=1
converges, diverges, or
is inconclusive.
```


Diverges

What is the sum of the infinite geometric series

$\frac{2}{3} + \frac{4}{27} + \frac{8}{243} + \frac{8}{243}$

Let
$$a_n, b_n, c_n$$
 be sequences of positive
numbers such that for all integers n,
 $a_n \le b_n \le c_n$. If $\sum_{n=1}^{\infty} b_n$ converges, which
must be true?
 $I. \sum_{n=1}^{\infty} a_n$ converges $II. \sum_{n=1}^{\infty} c_n$ converges

$$III.\sum_{n=1}^{\infty}(a_n+b_n) converges$$

I and III only

If
$$x = 2t^2$$
 and $y = t^3$, then $\frac{d^2 y}{dx^2}$
at $t = 3$ is

If $x = 2t^2$ and $y = t^3$, then $\frac{d^2 y}{dx^2}$ at t = 3 is

The velocity vector of a particle moving in the xy – plane is given by $\vec{v} = (2\sin t, 3\cos t)$ for $t \ge 0$. At t = 0, the particle is at the point (1,1). What is the position vector at t = 2? Calc. Active

The velocity vector of a particle moving in the xy – plane is given by $\vec{v} = (2\sin t, 3\cos t)$ for $t \ge 0$. At t = 0, the particle is at the point (1,1). What is the position vector at t = 2?

(3.832, 3.728)

(Non-Calc) A curve is given parametrically by the equations $x = 3t - t^3$ and $y = 3t^2$. The length of the arc from t = 0 to t = 2 is

(Non-Calc) A curve is given parametrically by the equations $x = 3t - t^3$ and $y = 3t^2$. The length of the arc from t = 0 to t = 2 is

\$4()() A curve is given parametrically by the equation $x = 3 - 4 \sin t$ and $y = 4 + \cos t$ for $0 \le t \le 2\pi$. What are all points (x, y)at which the curve has a vertical tangent? (C) (-1,4) and (7,4) (A)(-1,4) only (B)(3,7)(D) (3,7) and (3,1) (E) (4,-1) and (4,7)

A curve is given parametrically by the equation $x = 3 - 4 \sin t$ and $y = 4 + \cos t$ for $0 \le t \le 2\pi$. What are all points (x, y) at which the curve has a vertical tangent?

(C) (-1,4) and (7,4)

The rectangular equation of the curve given parametrically by $x = 1 + e^{-t}$ and $y = 1 + e^{t}$ is

The rectangular equation of the curve given parametrically by $x = 1 + e^{-t}$ and $y = 1 + e^{t}$ is

 x^3

 $1 + x^2$

The coefficient of x^6 in the Taylor series expansion of e^x about x = 0 is

ex

What value is obtained when using the fourth-degree Taylor polynomial for $\cos x$ about x = 0 to approximate cos 1? Write out your answer (no calc)

What value is obtained when using the fourth-degree Taylor polynomial for $\cos x$ about x = 0 to approximate $\cos 1$?

$$P(x) = x - \frac{1}{6}x^3$$
 is the third order Taylor polymonial for
sin x about $x = 0$. Use L'Grange Error Formula to find
the maximum value of $|P(x)-\sin x|$ for

$$0 \le x \le \frac{\pi}{3}$$
 is

 $P(x) = x - \frac{1}{6}x^3$ is the third order Taylor polymonial for sin x about x = 0. The maximum value of $|P(x)-\sin x|$ for

 $0 \le x \le \frac{\pi}{3}$ is

0.043

The Taylor series centerd at x = 2 for the

function g is given by $\sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^n}{(n+1)!}.$

What is $g^{(20)}(2)$, the 20th derivative

of g at x = 2?

Convert to Cartesian: $r\sin\theta = 0$

Convert to Cartesian: $r\sin\theta = 0$

\$100

(Calc) The area enclosed by the polar curve $r = 6\cos\theta + 8\sin\theta$ from $\theta = 0$ to $\theta = \pi$ is

(Calc) The area enclosed by the polar curve $r = 6\cos\theta + 8\sin\theta$ from $\theta = 0$ to $\theta = \pi$ is

If the function $r = f(\theta)$ is continuous and nonnegative for $0 \le \alpha \le \theta \le \beta \le 2\pi$, then the area enclosed by the polar curve $r = f(\theta)$ and the lines $\theta = \alpha$ and $\theta = \beta$ is given by

If the function $r = f(\theta)$ is continuous and nonnegative for $0 \le \alpha \le \theta \le \beta \le 2\pi$, then the area enclosed by the polar curve $r = f(\theta)$ and the lines $\theta = \alpha$ and $\theta = \beta$ is given by

Find the slope of $r = 2 - \sin \theta$ at $\theta = \pi$

Find the slope of $r = 2 - \sin \theta$ at $\theta = \pi$

\$400

Find the area shared by the circle r = 2 and the cardioid $r = 2(1 - \cos \theta)$

Find the area shared by the circle r = 2 and the cardioid $r = 2(1 - \cos \theta)$

Determine the maximum value of the solution to the initial value problem: $\frac{dy}{dt} = y - 2yt, \ y(0) = 1$

Determine the maximum value of the solution to the initial value problem: $\frac{dy}{dt} = y - 2yt, \ y(0) = 1$

Use Euler's Method with $\Delta x = \frac{1}{2}$ to approximate the value of y at $\bar{x} = 1$ for the solution curve to the differential equation $\frac{dy}{dt} = 2x^2 - y^2$ which passes through (0,1).

Use Euler's Method with $\Delta x = \frac{1}{x}$ to approximate the value of *y* at x = 1for the solution curve to the differential equation $\frac{dy}{dx} = 2x^2 - y^2$ which passes through (0,1). **Backto**

The rate of change with respect to time in the volume, V, of a sphere is inversely proportional, with proportionality constant k, to the square of the sphere's radius, r. A differential equation representing the change in the radius with respect to time is:

The rate of change with respect to time in the volume, V, of a sphere is inversely proportional, with proportionality constant k, to the square of the sphere's radius, r. A differential equation representing the change in the radius with respect to time is:

A heated cup of coffee of temperature 130°F is placed in a room of constant temperature 70°F. Write and solve the differential equation of temperature T with respect to time t.

A A heated cup of coffee of temperature 130°F is placed in a room of constant temperature 70°F. Write and solve the differential equation of temperature *T* with respect to time *t*.

 $V = \frac{1}{3}\pi r^2 h$ for a cone. Water is leaking out of a conical funnel of which the height is 12 cm and the diameter is 10 cm. Water is leaking out at a rate of $5 \text{ cm}^3 / \text{min}$. At what rate is the height of the water changing when there are 4 cm of water standing in the cone?

 $V = \frac{1}{3}\pi r^2 h$ for a cone. Water is leaking out of a conical funnel of which the height is 12 cm and the diameter is 10 cm. Water is leaking out at a rate of 5cm³/min. At what rate is the height of the water changing when there are 4 cm of water standing in the cone?

$-\frac{9}{5}\pi \ cm/\min$

What are all the *x*-coordinates of the critical points for the graph of f(x) = (x-4)(x-2)?

\$100 What are all the *x*-coordinates of the critical points for the graph of f(x) = (x-4)(x-2)?

-

The total area of the region bounded by the graph of y = x(1-x)(x-2)and the *x*-axis is

The total area of the region bounded by the graph of y = x(1-x)(x-2)and the *x*-axis is

The average value of $y = \sqrt{x}$ on the interval [1,16] is

The average value of

$$y = \sqrt{x}$$

on the interval [1,16] is

 x^2

$2x^2 + 2\ln|x| - \frac{1}{x} + C$

The foot of a 20' ladder is being pulled away from a wall at the rate of 1.5 ft/sec. At the instant when the foot is 12 ft. away from the wall, the angle the ladder makes with the floor is decreasing at the rate (in radian/sec) of:

32

The foot of a 20' ladder is being pulled away from a wall at the rate of 1.5 ft/sec. At the instant when the foot is 12 ft. away from the wall, the angle the ladder makes with the floor is decreasing at the rate (in radian/sec) of:

Final Jeopardy

If
$$f(x) = \begin{cases} e^{-x} + 2, \ x < 0 & \text{is differentiable} \\ ax + b, \ x \ge 0 \end{cases}$$

at x = 0, then a + b = ??? (answer is a constant!)

Final Jeopardy

If $f(x) = \begin{cases} e^{-x} + 2, \ x < 0 & \text{is differentiable} \\ ax + b, \ x \ge 0 \end{cases}$

at x = 0, then a + b = ??? (answer is a constant!)

Final Jeopardy

Nice Try.

Sound and other objects

sn0065A Slot machines

- J0074877 Space Laser 2
- J0097484 Large Explosion
 - J0074988 Space Door

Do Not Delete! Contains objects for game.

Design Credits

PowerPoint Slide Show created by Randy Wyatt Green Hope High School Morrisville, NC

Adapted from Slide Show by Carol Nata

Revision History

Version 4 – June 2003

- Changed points to dollars
- Added link to credits screen by clicking on "Math Jeopardy" on game board
- Changed problems and answers to generic place holders
- Minor color and sound changes on opening game screen

Version 5 – September 2003

- Removed macros and visual basic code
- Rearranged "back to problem" and "back to game board" buttons on answer pages

Testing Area

Help for Teachers

To create a new set of categories and problems:

- Update topics on title screen (slide 2)
- Rename category headers on question board (slide 3)
- Change category help slides (immediately following question board)
- Modify questions and answers (answers immediately follow each question slide)
- Cut and Paste Daily Doubles

Tips:

- Questions and answers are MathType objects. It is easier if you keep it that way. Even for text problems.
- To put copy of question on the answer slide, copy and paste the MathType object from the question slide then resize.
- The EXIT graphic on the game board will exit WITHOUT saving anything. It is intended for student use when playing.
- Make sure you test your game to make sure everything is linked and working correctly.
- When playing the intro screen of the game you can click in the lower right corner at any time to skip the intro and go directly to the question board.

Do NOT:

• Change any hyperlinks

Type <ctrl><home> to return to 1st slide

Chapter 5 Topics (Integration)

- Finding integrals using geometric shapes
- Rectangular Approximation Methods (left, right, midpoint)
- Trapezoidal Method of approximating area
- AVERAGE VALUE THEOREM
- Integral Properties
- Fundamental Theorem (derivatives and integrals undo each other)
- Fundamental Theorem, Part 2 ^b

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$