

Filleal Lequartiy Math Jeopardy

| onvergence
 Tests | Parametric | Taylor'
 Maclaurin
 Series |
| :---: | :---: | :---: | | Polar |
| :---: | | AB |
| :---: |
| Obscurities |\quad| Easy |
| :---: |
| AB Stuff |

$\$ 100$

$\$ 100 \quad \$ 100$

$\$ 100$

$\$ 200$

$\$ 200$
$\$ 300$

$\$ 300$ $\$ 300$

$\$ 400$

$\$ 400$

$\$ 400$

$\$ 500$

$\$ 500$

 $\$ 500$
$\$ 500$

\square $\$ 500$

Cat1Help

Text Object.

Math Type Object
Double Click to Edit

Cat2Help

Text Object.

Math Type Object
Double Click to Edit

Cat3Help

Text Object.

Math Type Object
Double Click to Edit

Cat4Help

Text Object.

Math Type Object
Double Click to Edit

Cat5Help

Text Object.

Math Type Object
Double Click to Edit

Cat6Help

Text Object.

Math Type Object
Double Click to Edit

$\$ 100$

$\$ 200$

Which of these

$$
\text { I. } \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{3 n+1}
$$

$$
\begin{aligned}
& \text { II. } \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{4}{3}\right)^{n} \\
& \text { III. } \sum_{n=4}^{\infty} \frac{1}{n \ln n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { I. } \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{3 n+1} \\
& \text { II. } \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{4}{3}\right)^{n} \\
& \text { III. } \sum_{n=4}^{\infty} \frac{1}{n \ln n}
\end{aligned}
$$

$\$ 200$

I only

$\$ 300$

Perform the ratio test to

 decide whether...
converges, diverges, or is inconclusive.

$$
n!
$$

$\$ 300$

Diverges

$\$ 400$

What is the sum of the infinite

 geometric series$$
\frac{2}{3}+\frac{4}{27}+\frac{8}{243}+\ldots ?
$$

$\$ 400$

7
\square

[^0]
 \section*{\title{
$\frac{2}{3}+\frac{4}{27}+\frac{8}{243}+\ldots ?$
 \section*{\title{
$\frac{2}{3}+\frac{4}{27}+\frac{8}{243}+\ldots ?$

}}

$\$ 500$

Let $\mathrm{a}_{\mathrm{n}}, b_{n}, c_{n}$ be sequences of positive numbers such that for all integers n,
$\mathrm{a}_{\mathrm{n}} \leq b_{n} \leq c_{n}$. If $\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}}$ converges, which
must be true?

$$
I . \sum_{\mathrm{n}=1} a_{\mathrm{n}} \text { converges II. } \sum_{\mathrm{n}=1}^{\infty} c_{\mathrm{n}} \text { converges }
$$

$$
\text { III. } \sum_{\mathrm{n}=1}^{\infty}\left(a_{\mathrm{n}}+b_{n}\right) \text { converges }
$$

I. $\sum_{\mathrm{n}=1}^{\infty} a_{\mathrm{n}}$ converges $I I . \sum_{\mathrm{n}=1}^{\infty} c_{\mathrm{n}}$ converges
III. $\sum_{\mathrm{n}=1}^{\infty}\left(a_{\mathrm{n}}+b_{n}\right)$ converges

I and III only

$\$ 100$

$$
\begin{aligned}
& \text { If } x=2 t^{2} \text { and } y=t^{3}, \text { then } \frac{d^{2} y}{d x^{2}} \\
& \text { at } t=3 \text { is }
\end{aligned}
$$

$$
\text { If } x=2 t^{2} \text { and } y=t^{3}, \text { then } \frac{d^{2} y}{d x^{2}}
$$

$\$ 100$

at $t=3$ is

1
 16

$\$ 200$

The velocity vector of a particle moving in the $x y$ - plane is given by $\vec{v}=(2 \sin t, 3 \cos t)$ for $t \geq 0$. At $t=0$, the particle is at the point $(1,1)$. What is the position vector at $t=2$?

Calc. Active

The velocity vector of a particle moving in
the $x y$-plane is given by $\vec{v}=(2 \sin t, 3 \cos t)$
for $t \geq 0$. At $t=0$, the particle is at the point $(1,1)$. What is the position vector at $t=2$?

(3.832,3.728)

$\$ 300$

(Non-Calc) A curve is given parametrically by the equations $x=3 t-t^{3}$ and $y=3 t^{2}$. The length of the arc from $t=0$ to $t=2$ is
(Non-Calc) A curve is given parametrically by the equations $x=3 t-t^{3}$ and $y=3 t^{2}$. The length of the arc from $t=0$ to $t=2$ is

1

$\$ 400$

A curve is given parametrically by the equation $x=3-4 \sin t$ and $y=4+\cos t$ for $0 \leq t \leq 2 \pi$. What are all points (x, y) at which the curve has a vertical tangent?
(A) $(-1,4)$ only
(B) $(3,7)$
(C) $(-1,4)$ and $(7,4)$
(D) $(3,7)$ and $(3,1)$
(E) $(4,-1)$ and $(4,7)$

A curve is given parametrically by the

$\$ 400$

 equation $x=3-4 \sin t$ and $y=4+\cos t$ for $0 \leq t \leq 2 \pi$. What are all points (x, y) at which the curve has a vertical tangent?
(C) $(-1,4)$ and $(7,4)$

$\$ 500$

The rectangular equation of the curve given parametrically by $x=1+e^{-t}$ and
$y=1+e^{t}$ is

The rectangular equation of the curve given parametrically by $x=1+e^{-t}$ and

$\$ 100$

The Maclaurin series expansion of $\frac{x^{3}}{1+x^{2}}$ is

$\$ 100$

x^{3}
 $\overline{1+x^{2}}$

\$200

The coefficent of x^{6} in the Taylor series expansion of e^{x} about $x=0$ is

$\$ 200$

1

$6!$

$\$ 300$

What value is obtained when
using the fourth-degree Taylor
polynomial for $\cos x$ about $x=0$ to approximate cos 1 ? Write out your answer (no calc)

What value is obtained when using the fourth-degree

$\$ 400$

$P(x)=x-\frac{1}{6} x^{3}$ is the third order Taylor polymonial for
$\sin x$ about $x=0$. Use L'Grange Error Formula to find the maximum value of $|\mathrm{P}(\mathrm{x})-\sin x|$ for

$$
0 \leq x \leq \frac{\pi}{3} \text { is }
$$

$P(x)=x-\frac{1}{6} x^{3}$ is the third order Taylor polymonial for

$\$ 400$

$\sin x$ about $x=0$. The maximum value of $|\mathrm{P}(\mathrm{x})-\sin x|$ for

$$
0 \leq x \leq \frac{\pi}{3} \text { is }
$$

0.043

Bactuc Prodein

Backitio

$\$ 500$

The Taylor series centerd at $x=2$ for the
function g is given by $\sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{\mathrm{n}}(x-2)^{n}}{(n+1)!}$.
What is $g^{(20)}(2)$, the 20th derivative of g at $x=2$?

The Taylor series centerd at $x=2$ for the
function g is given by $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{(n+1)!}$.
$\$ 500$

What is $g^{(20)}(2)$, the 20th derivative
of g at $x=2$?

1

21

$\$ 100$

Convert to Cartesian: $r \sin \theta=0$

Convert to Cartesian:

$\$ 100$

$r \sin \theta=0$

0

$\$ 200$

(Calc) The area enclosed by the polar curve $r=6 \cos \theta+8 \sin \theta$ from $\theta=0$ to $\theta=\pi$ is
(Calc) The area enclosed by the polar curve
$r=6 \cos \theta+8 \sin \theta$ from $\theta=0$ to $\theta=\pi$ is

$\$ 300$

If the function $r=f(\theta)$ is continuous and nonnegative for $0 \leq \alpha \leq \theta \leq \beta \leq 2 \pi$, then the area enclosed by the polar curve $r=f(\theta)$ and the lines $\theta=\alpha$ and $\theta=\beta$ is given by

If the function $r=f(\theta)$ is continuous
and nonnegative for $0 \leq \alpha \leq \theta \leq \beta \leq 2 \pi$,
then the area enclosed by the polar curve
$r=f(\theta)$ and the lines $\theta=\alpha$ and $\theta=\beta$
is given by

$\frac{1}{2} \int_{\alpha}^{\beta} f(\theta){ }^{2} d \theta$

$\$ 400$

Find the slope of $r=2-\sin \theta$ at $\theta=\pi$

$\$ 500$

Find the area shared by the circle

 $r=2$ and the cardioid $r=2(1-\cos \theta)$Ansixiel

Find the area shared by the circle $r=2$ and the cardioid $r=2(1-\cos \theta)$

7
 -
 7
 08

$\$ 100$

Determine the maximum value of the solution to the initial value problem:

$$
\frac{d y}{d t}=y-2 y t, y(0)=1
$$

$\$ 100$

Determine the maximum value of the solution to the initial value problem: $\frac{d y}{d t}=y-2 y t, y(0)=1$

Use Euler's
Method with
$\Delta x=\frac{1}{2}$ to
approximate the value of y at $x=1$
for the solution curve to the
differential
equation
$\frac{d y}{d x}=2 x^{2}-y^{2}$
which passes through $(0,1)$.

Baickle

Proileim

$\$ 300$

The rate of change with respect to time in the volume, V, of a sphere is inversely proportional, with proportionality constant k, to the square of the sphere's radius, r. A
differential equation representing the change in the radius with respect to time is:

The rate of change with respect to time in the volume, V, of a sphere is inversely proportional, with proportionality constant k, to the square of the sphere's radius, r. A differential equation representing the change in the radius with respect to time is:

$$
\frac{d r}{d t}=\frac{k}{4 \pi r^{4}}
$$

A heated cup of coffee of temperature $130^{\circ} \mathrm{F}$ is placed in a room of constant temperature $70^{\circ} \mathrm{F}$. Write and solve the differential equation of temperature T with respect to time t.

A A heated cup of coffee of temperature $130^{\circ} \mathrm{F}$ is placed in a room of constant temperature $70^{\circ} \mathrm{F}$. Write and solve the differential equation of temperature T with respect to time t.

$$
\begin{aligned}
& \frac{d T}{d t}=-k(T-70) \\
& T-70=60 e^{-k t}
\end{aligned}
$$

$\$ 500$

$V=\frac{1}{3} \pi r^{2} h$ for a cone. Water is leaking out
of a conical funnel of which the height is 12 cm and the diameter is 10 cm . Water is leaking out at a rate of $5 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the height of the water changing when there are 4 cm of water standing in the cone?
$V=\frac{1}{3} \pi r^{2} h$ for a cone. Water is leaking out
of a conical funnel of which the height is 12 cm and the diameter is 10 cm . Water is leaking out at a rate of $5 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the height of the water changing when there are 4 cm of water standing in the cone?

9
 $-\frac{9}{5} \pi \mathrm{~cm} / \mathrm{min}$ 5

$\$ 100$

What are all the x-coordinates of the critical points for the graph of

$$
f(x)=(x-4)(x-2) ?
$$

$\$ 100$

What are all the x-coordinates of the critical points

 for the graph of $f(x)=(x-4)(x-2)$?
3

DALIS OUBLE

The total area of the region bounded

$$
\begin{gathered}
\text { by the graph of } \\
y=x(1-x)(x-2) \\
\text { and the } x \text {-axis is }
\end{gathered}
$$

$\$ 200$

The total area of the region bounded by the graph of
$y=x(1-x)(x-2)$
and the x-axis is

$\$ 300$

The average value of $y=\sqrt{x}$ on the interval $[1,16]$ is

$\$ 300$

The average

 value of$y=\sqrt{x}$
on the interval
$[1,16]$ is

42

15

$\$ 400$

$4 x^{3}+2 x+1$

x

The foot of a 20 ' ladder is being pulled away from a wall at the rate of $1.5 \mathrm{ft} / \mathrm{sec}$. At the instant when the foot is 12 ft . away from the wall, the angle the ladder makes with the floor is decreasing at the rate (in radian/sec) of:

The foot of a 20^{\prime}

ladder is being pulled away from a wall at the rate of $1.5 \mathrm{ft} / \mathrm{sec}$. At the instant when the foot is 12 ft . away from the wall, the angle the ladder makes with the floor is decreasing at the rate (in radian $/ \mathrm{sec}$) of:

Final Jeopardy

If $f(x)=\left\{\begin{array}{l}e^{-x}+2, x<0 \\ a x+b, x \geq 0\end{array}\right.$ is differentiable
at $\mathrm{x}=0$, then $\mathrm{a}+\mathrm{b}=? ?$? (answer is a constant!)

$$
\text { If } f(x)=\left\{\begin{array}{l}
e^{-x}+2, x<0 \\
a x+b, x \geq 0
\end{array}\right. \text { is differentiable }
$$

at $\mathrm{x}=0$, then $\mathrm{a}+\mathrm{b}=?$?? (answer is a constant!)

Final Jeopardy

Nice Try.

Sound and other objects

sn0065A Slot machines
J0074879 Space Laser

J0074877 Space Laser 2

J0097484 Large Explosion

Do Not Delete!
Contains objects for game.

Design Credits

PowerPoint Slide Show created by

Randy Wyatt
Green Hope High School

Morrisville, NC

Adapted from Slide Show by Carol Nata

Revision History

Version 4 - June 2003

- Changed points to dollars
- Added link to credits screen by clicking on "Math Jeopardy" on game board
- Changed problems and answers to generic place holders
- Minor color and sound changes on opening game screen

Version 5 - September 2003

- Removed macros and visual basic code
- Rearranged "back to problem" and "back to game board" buttons on answer pages

Testing Area

Help for Teachers

To create a new set of categories and problems:

- Update topics on title screen (slide 2)
- Rename category headers on question board (slide 3)
- Change category help slides (immediately following question board)
- Modify questions and answers (answers immediately follow each question slide)
- Cut and Paste Daily Doubles

Tips:

- Questions and answers are MathType objects. It is easier if you keep it that way. Even for text problems.
- To put copy of question on the answer slide, copy and paste the MathType object from the question slide then resize.
- The EXIT graphic on the game board will exit WITHOUT saving anything. It is intended for student use when playing.
- Make sure you test your game to make sure everything is linked and working correctly.
- When playing the intro screen of the game you can click in the lower right corner at any time to skip the intro and go directly to the question board.

Do NOT:

- Change any hyperlinks

Chapter 5 Topics (Integration)

- Finding integrals using geometric shapes
- Rectangular Approximation Methods (left, right, midpoint)
- Trapezoidal Method of approximating area
- AVERAGE VALUE THEOREM
- Integral Properties
- Fundamental Theorem (derivatives and integrals undo each other)
- Fundamental Theorem, Part 2

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

[^0]:

